初中学习网-初中学习方法、解题技巧、知识点总结、学习计划、同步辅导资料!

初中学习网-人民教育出版社人教版部编同步解析与测评答案-电子课本资料下载-知识点总结学习方法与技巧补课解题技巧学习计划表-人教网-初中试卷网-中学学科网

当前位置: 首页 > 初中数学 > 初二试题库 > 月考 >

华师大版2015初二数学下册期中重点测试卷(含答案解析)(8)

http://www.newdu.com 2020-05-15 新东方 佚名 参加讨论

    20.如图,AB是CD的垂直平分线,交CD于点M,过点M作ME⊥A C,MF⊥AD,垂足分别为E、F.
    (1)求证:∠CAB=∠DAB;
    (2)若∠CAD=90°,求证:四边形AEMF是正方形.
    考点: 正方形的判定;线段垂直平分线的性质;等腰三角形的判定与性质.
    专题: 证明题.
    分析: (1)根据AB是CD的垂直平分线,得到AC=AD,然后利用三线合一的性质得到∠CAB= ∠DAB即可;
    (2)首先判定四边形AEMF是矩形,然后证得ME=MF,利用邻边相等的矩形AEMF是正方形进行判定即可.
    解答: (1)证明:∵AB是CD的垂直平分线,
    ∴AC=AD,
    又∵AB⊥CD
    ∴∠CAB=∠DAB(等腰三角形的三线合一);
    (2)证明:∵ME⊥A C,MF⊥AD,∠CAD=90°,
    即∠CAD=∠AEM=∠AFM=90°,
    ∴四边形AEMF是矩形,
    又∵∠CAB=∠DAB,ME⊥A C,MF⊥AD,
    ∴ME=MF,
    ∴矩形AEMF是正方形.
    点评: 本题考查正方形的判定,线段的垂直平分线的性质及等腰三角形的判定与性质的知识,综合性较强,难度不大.
    21.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
    (1)探究:线段OE与OF的数量关系并加以证明;
    (2)当点O运动到何处时,且△ABC满足什么条件时,四边形AECF是正方形?
    (3)当点O在边AC上运动时,四边形BCFE 不可能 是菱形吗?(填“可能”或“不可能”)
    考点: 正方形的判定;菱形的判定.
    分析: (1)由直线MN∥BC,MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,易证得△OEC与△OFC是等腰三角形,则可证得OE=OF=OC;
    (2)正方形的判定问题,AECF若是正方形,则必有对角线OA=OC,所以O为AC的中点,同样在△ABC中,当∠ACB=90°时,可满足其为正方形;
    (3)菱形的判定问题,若使菱形,则必有四条边相等,对角线互相垂直.
    解答: 解:(1)OE=OF.理由如下:
    ∵CE是∠ACB的角平分线,
    ∴∠ACE=∠BCE,
    又∵MN∥BC,
    ∴∠NEC=∠ECB,
    ∴∠NEC=∠ACE,
    ∴OE=OC,
    ∵OF是∠BCA的外角平分线,
    ∴∠OCF=∠FCD,
    又∵MN∥BC,
    ∴∠OFC=∠ECD,
    ∴∠OFC=∠COF,
    ∴OF=OC,
    ∴OE=OF;
    (2)当点O运动到AC的中点,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.理由如下:
    ∵当点O运动到AC的中点时,AO=CO,
    又∵EO=FO,
    ∴四边形AECF是平行四边形,
    ∵FO=CO,
    ∴AO=CO=EO=FO,
    ∴AO+CO=EO+FO,即AC=EF,
    ∴四边形AECF是矩形.
    已知MN∥BC,当∠ACB=90°,则
    ∠AOF=∠COE=∠COF=∠AOE=90°,
    ∴AC⊥EF,
    ∴四边形AECF是正方形;
    (3)不可能.理由如下:
    如图,∵CE平分∠ACB,CF平分∠ACD,
    ∴∠ECF= ∠ACB+ ∠ACD= (∠ACB+∠ACD)=90°,
    若四边形BCFE是菱形,则BF⊥EC,
    但在△GFC中,不可能存在两个角为90°,所以不存在其为菱形.
    故答案为不可能.
    点评: 本题考查了平行线的性质,角平分线的定义,等腰三角形的判定,正方形、菱形的判定,难度适中,注意掌握数形结合思想的应用. (责任编辑:admin)
织梦二维码生成器
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
初中语文
初中数学
初中英语
初中物理
初中化学
初中生物
初中历史
初中地理
初中道德与法治
初中历史与社会
初中日语、俄语
学习方法
初中竞赛