华师大版2015初二数学下册期中重点测试卷(含答案解析) 一.选择题(共8小题) 1.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是( ) A.选①② B.选②③ C.选①③ D.选②④ 2.下列说法中,正确的是( ) A.相等的角一定是对顶角 B.四个角都相等的四边形一定是正方形 C.平行四边形的对角线互相平分 D.矩形的对角线一定垂直 3.下列命题中是假命题的是( ) A.一组对边平行且相等的四边形是平行四边形 B.一组对边相等且有一个角是直角的四边形是矩形 C.一组邻边相等的平行四边形是菱形 D.一组邻边相等的矩形是正方形 4.已知四边形ABCD是平行四边形,下列结论中不正确的有( ) ①当AB=BC时,它是菱形;②当AC⊥BD时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC=BD时,它是正方形. A.1组 B.2组 C.3组 D.4组 5.四边形ABCD的对角线AC=BD,AC⊥BD,分别过A、B、C、D作对角线的平行线,所成的四边形EFMN是( ) A.正方形 B.菱形 C.矩形 D.任意四边形 6.如果要证明平行四边形ABCD为正方形,那么我们需要在四边形ABCD是平行四边形的基础上,进一步证明( ) A.AB=AD且AC⊥BD B.AB=AD且AC=BD C.∠A=∠B且AC=BD D.AC和BD互相垂直平分 7.下列命题中,真命题是( ) A.对角线相等的四边形是矩形 B.对角线互相垂直的四边形是菱形 C.对角线互相平分的四边形是平行四边形 D.对角线互相垂直平分的四边形是正方形 8.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是( ) A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF 二.填空题(共6小题) 9.能使平行四边形ABCD为正方形的条件是 _________ (填上一个符合题目要求的条 件即可). 10.如图,在Rt△ABC中,∠C=90°,DE垂直平分AC,DF⊥BC,当△ABC满足条件 _________ 时,四边形DECF是正方形. (要求:①不再添加任何辅助线,②只需填一个符合要求的条件) 11.如图,菱形ABCD的对角线相交于点O,请你添加一个条件: _________ ,使得该菱形为正方形. 12.如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是 _________ . 13.已知四边形ABCD中,∠A=∠B=∠C=90°,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是 _________ . 14.要使一个菱形成为正方形,需添加一个条件为 _________ . 三.解答题(共8小题) 15.已知:如图,△ABC中,∠ABC=90°,BD是∠ABC的平分线,DE⊥AB于点 E,DF⊥BC于点F.求证:四边形DEBF是正方形. 16.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N. (1)求证:∠ADB=∠CDB; (2)若∠ADC=90°,求证:四边形MPND是正方形. 17.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE. (1)求证:CE=AD; (2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由; (3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由. 18.如图,在△ABC中,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得到△CFE. (1)求证:四边形ADCF是平行四边形. (2)当△ABC满足什么条件时,四边形ADCF是正方形?请说明理由. 19.如图,分别以线段AB的两个端点为圆心,大于AB的长为半径作弧,两弧交于M、N两点,连接MN,交AB于点D、C是直线MN上任意一点,连接CA、CB,过点D作DE⊥AC于点E,DF⊥BC于点F. (1)求证:△AED≌△BFD; (2)若AB=2,当CD的值为 _________ 时,四边形DECF是正方形. 20.如图,AB是CD的垂直平分线,交CD于点M,过点M作ME⊥A C,MF⊥AD,垂足分别为E、F. (1)求证:∠CAB=∠DAB; (2)若∠CAD=90°,求证:四边形AEMF是正方形. 21.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F. (1)探究:线段OE与OF的数量关系并加以证明; (2)当点O运动到何处时,且△ABC满足什么条件时,四边形AECF是正方形? (3)当点O在边AC上运动时,四边形BCFE _________ 是菱形吗?(填“可能”或“不可能”) 22.已知:如图,△ABC中,点O是AC上的一动点,过点O作直线MN∥AC,设MN交∠BCA的平分线于点E,交∠BCA的外角∠ACG的平分线于点F,连接AE、AF. (1)求证:∠ECF=90°; (2)当点O运动到何处时,四边形AECF是矩形?请说明理由; (3)在(2)的条件下,△ABC应该满足条件: _________ ,就能使矩形AECF变为正方形.(直接添加条件,无需证明) (责任编辑:admin) |