初中学习网-初中学习方法、解题技巧、知识点总结、学习计划、同步辅导资料!

初中学习网-人民教育出版社人教版部编同步解析与测评答案-电子课本资料下载-知识点总结学习方法与技巧补课解题技巧学习计划表-人教网-初中试卷网-中学学科网

当前位置: 首页 > 初中数学 > 初二试题库 > 月考 >

华师大版2015初二数学下册期中重点测试卷(含答案解析)(6)

http://www.newdu.com 2020-05-15 新东方 佚名 参加讨论

    三.解答题(共8小题)
    15.已知:如图,△ABC中,∠ABC=90°,BD是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F.求证:四边形DEBF是正方形.
    考点: 正方形的判定.
    专题: 证明题.
    分析: 由DE⊥AB,DF⊥BC,∠ABC=90°,先证明四边形DEBF是矩形,再由BD是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F得出DE=DF判定四边形DEBF是正方形.
    解答: 解:∵DE⊥AB,DF⊥BC,
    ∴∠DEB=∠DFB=90°,
    又∵∠ABC=90°,
    ∴四边形BEDF为矩形,
    ∵BD是∠ABC的平分线,且DE⊥AB,DF⊥BC,
    ∴DE=DF,
    ∴矩形BEDF为正方形.
    点评: 本题考查正方形的判定、角平分线 的性质和矩形的判定.要注意判定一个四边形是正方形,必须先证明这个四边形为矩形或菱形.
    16.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.
    (1)求证:∠ADB=∠CDB;
    (2)若∠ADC=90°,求证:四边形MPND是正方形.
    考点: 正方形的判定;全等三角形的判定与性质.
    专题: 证明题.
    分析: (1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB;
    (2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.
    解答: 证明:(1)∵对角线BD平分∠ABC,
    ∴∠ABD=∠CBD,
    在△ABD和△CBD中,
    ,
    ∴△ABD≌△CBD(SAS),
    ∴∠ADB=∠CDB;
    (2)∵PM⊥AD,PN⊥CD,
    ∴∠PMD=∠PND=90°,
    ∵∠ADC=90°,
    ∴四边形MPND是矩形,
    ∵∠ADB=∠CDB,
    ∴∠ADB=45°
    ∴PM=MD,
    ∴四边形MPND是正方形.
    点评: 本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.
    17.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.
    (1)求证:CE=AD;
    (2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;
    (3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.
    考点: 正方形的判定;平行四边形的判定与性质;菱形的判定.
    专题: 几何综合题.
    分析: (1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;
    (2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;
    (3)求出∠CDB=90°,再根据正方形的判定推出即可.
    解答: (1)证明:∵DE⊥BC,
    ∴∠DFB=90°,
    ∵∠ACB=90°,
    ∴∠ACB=∠DFB,
    ∴AC∥DE,
    ∵MN∥AB,即CE∥AD,
    ∴四边形ADEC是平行四边形,
    ∴CE=AD;
    (2)解:四边形BECD是菱形,
    理由是:∵D为AB中点,
    ∴AD=BD,
    ∵CE=AD,
    ∴BD=CE,
    ∵BD∥CE,
    ∴四边形BECD是平行四边形,
    ∵∠ACB=90°,D为AB中点,
    ∴CD=BD,
    ∴四边形BECD是菱形;
    (3)当∠A=45°时,四边形BECD是正方形,理由是:
    解:∵∠ACB=90°,∠A=45°,
    ∴∠ABC=∠A=45°,
    ∴AC=BC,
    ∵D为BA中点,
    ∴CD⊥AB,
    ∴∠CDB=90°,
    ∵四边形BECD是菱形,
    ∴四边形BECD是正方形,
    即当∠A=45°时,四边形BECD是正方形.
    点评: 本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力. (责任编辑:admin)
织梦二维码生成器
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
初中语文
初中数学
初中英语
初中物理
初中化学
初中生物
初中历史
初中地理
初中道德与法治
初中历史与社会
初中日语、俄语
学习方法
初中竞赛