7.下列命题中,真命题是( ) A. 对角线相等的四边形是矩形 B. 对角线互相垂直的四边形是菱形 C. 对角线互相平分的四边形是平行四边形 D. 对角线互相垂直平分的四边形是正方形 考点: 正方形的判定;平行四边形的判定;菱形的判定;矩形的判定;命题与定理. 分析: A、根据矩形的定义作出判断; B、根据菱形的性质作出判断; C、根据平行四边形的判定定理作出判断; D、根据正方形的判定定理作出判断. 解答: 解:A、两条对角线相等且相互平分的四边形为矩形;故本选项错误; B、对角线互相垂直的平行四边形是菱形;故本选项错误; C、对角线互相平分的四边形是平行四边形;故本选项正确; D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误; 故选C. 点评: 本题综合考查了正方形、矩形、菱形及平行四边形的判定.解答此题时,必须理清矩形、正方形、菱形与平行四边形间的关系. 8.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四 边形BECF为正方形的是( ) A. BC=AC B.CF⊥BF C.BD=DF D. AC=BF 考点: 正方形的判定;线段垂直平分线的性质. 分析: 根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC进而得 出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可. 解答: 解:∵EF垂直平分BC, ∴BE=EC,BF=CF, ∵BF=BE, ∴BE=EC=CF=BF, ∴四边形BECF是菱形; 当BC=AC时, ∵∠ACB=90°, 则∠A=45°时,菱形BECF是正方形. ∵∠A=45°,∠ACB=90°, ∴∠EBC=45° ∴∠EBF=2∠EBC=2×45°=90° ∴菱形BECF是正方形. 故选项A正确,但不符合题意; 当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意; 当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意; 当AC=BF时,无法得出菱形BECF是正方形,故选项D错误,符合题意. 故选:D. 点评: 本题考查了菱形的判定和性质及中垂线的性质、直角三角形的性质、正方形的判定等知识,熟练掌握正方形的相关的定理是解题关键. 二.填空题(共6小题) 9.能使平行四边形ABCD为正方形的条件是 AC=BD且AC⊥BD (填上一个符合题目要求的条件即可). 考点: 正方形的判定;平行四边形的性质. 专题: 开放型. 分析: 对角线互相垂直的平行四边形是菱形,对角线相等的平行四边形是矩形,矩形和菱形的结合体是正方形. 解答: 解:可添加对角线相等且对角线垂直或对角线相等,且一组邻边相等;或对角线垂直,有一个内角是90°.答案不唯一,此处填:AC=BD且AC⊥BD. 点评: 本题考查正方形的判定,需注意它是菱形和矩形的结合. (责任编辑:admin) |