8.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是 3 . 考点: 正方形的判定与性质;全等三角形的判定与性质. 分析: 过点D作DE⊥DP交BC的延长线于E,先判断出四边形DPBE是矩形 ,再根据等角的余角相等求出∠ADP=∠CDE,再利用“角角边”证明△ADP和△CDE全等,根据全等三角形对应边相等可得DE=DP,然后判断出四边形DPBE是正方形,再根据正方形的面积公式解答即可. 解答: 解:如图,过点D作DE⊥DP交BC的延长线于E, ∵∠ADC=∠ABC=90°, ∴四边形DPBE是矩形, ∵∠CDE+∠CDP=90°,∠ADC=90°, ∴∠ADP+∠CDP=90°, ∴∠ADP=∠CDE, ∵DP⊥AB, ∴∠APD=90°, ∴∠APD=∠E=90°, 在△ADP和△CDE中, , ∴△ADP≌△CDE(AAS), ∴DE=DP,四边形ABCD的面积=四边形DPBE的面积=18, ∴矩形DPBE是正方形, ∴DP= =3 . 故答案为:3 . 点评: 本题考查了正方形的判定与性质,全等三角形的判定与性质,熟记各性质并作辅助线构造出全等三角形和正方形是解题的关键. 9.四边形ABCD的对角线AC和BD相交于点O,设有下列条件:①AB=AD;②∠DAB=90°;③AO=CO,BO=DO;④矩形ABCD;⑤菱形ABCD,⑥正方形ABCD,则在下列推理不成立的是 C A、①④?⑥;B、①③?⑤;C、①②?⑥;D、②③?④ 考点: 正方形的判定与性质;全等三角形的判定与性质;菱形的判定与性质;矩形的判定与性质. 专题: 证明题. 分析: 根据矩形、菱形、正方形的判定定理,对角线互相平分的四边形 为平行四边形,再由邻边相等,得出是菱形,和一个角为直角得出是正方形,根据已知对各个选项进行分析从而得到最后的答案. 解答: 解:A、由①④得,一组邻边相等的矩形是正方形,故正确; B、由③得,四边形是平行四边形,再由①,一组邻边相等的平 行四边形是菱形,故正确; C、由①②不能判断四边形是正方形; D、由③得,四边形是平行四边形,再由②,一个角是直角的平行四边形是矩形,故正确. 故选C. 点评: 此题用到的知识点是:矩形、菱形、正方形的判定定理,如:一组邻边相等的矩形是正方形;对角线互相平分且一组邻边相等的四边形是菱形;对角线互相平分且一个角是直角的四边形是矩形.灵活掌 握这些判定定理是解本题的关键. (责任编辑:admin) |