18.如图,将平行四边形ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F. (1)求证:AC=BE; (2)若∠AFC=2∠D,连接AC,BE.求证:四边形ABEC是矩形. 考点: 矩形的判定;平行四边形的性质. 专题: 几何图形问题;证明题. 分析: (1)根据平行四边形的性质得到AB∥CD,AB=CD,然后根据CE=DC,得到AB=EC,AB∥EC,利用一组对边平行且相等的四边形是平行四边形判断即可; (2)由(1)得的结论先证得四边形ABEC是平行四边形,通过角的关系得出FA=FE=FB=FC,AE=BC,得证. 解 答: 证明:(1)∵四边形ABCD是平行四边形, ∴AB∥CD,AB=CD, ∵CE=DC, ∴AB=EC,AB∥EC, ∴四边形ABEC是平行四边形, ∴AC=BE; (2)∵AB=EC,AB∥EC, ∴四边形ABEC是平行四边形, ∴FA=FE,FB=FC, ∵四边形ABCD是平行四边形, ∴∠ABC=∠D, 又∵∠AFC=2∠D, ∴∠AFC=2∠ABC, ∵∠AFC=∠ABC+∠BAF, ∴∠ABC=∠BAF, ∴FA=FB, ∴FA=FE=FB=FC, ∴AE=BC, ∴四边形ABEC是矩形. 点评: 此题考查的知识点是平行四边形的判定与性质和性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形通过角的关系证矩形. 19.已知:如图,在△ABC中,AB=AC,M是BC的中点,MD⊥AB,ME⊥AC,DF⊥AC,EG⊥AB,垂足分别为点D、E、F、G,DF、EG相交于点P.判断四边形MDPE的形状,并说明理由. 考点: 菱形的判定. 专题: 证明题. 分析: 根据MD⊥AB,ME⊥AC,DF⊥AC,EG⊥AB,先推得四边形MDPE为平行四形,再根据AB=AC,M是BC的中点,得到MD=ME,由“有一组邻边相等的平行四边形是菱形”证明. 解答: 证明:四边形MDPE为菱形,理由: 连接AM. ∵ME⊥AC,DF⊥AC, ∴ME∥DF, ∵MD⊥AB,EG⊥AB, ∴MD∥EG, ∴四边形MDPE是平行四边形; ∵AB=AC,M是BC的中点, ∴AM是角平分线, ∴MD=ME, ∴四边形MDPE为菱形. 点评: 菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法: ①定义; ②四边相等; ③对角线互相垂直平分. 20.如图:在平行四边形ABCD中,AC的垂直平分线分别交C D、AB于E、F两点,交AC于O点,试判断四边形AECF的形状,并说明理由. 考点: 菱形的判定;平行四边形的性质. 分析: 根据平行四边形性质推出AD∥BC,得出∠DAO=∠ACF,∠AEO=∠CFO,根据AAS证△AEO≌△CFO,推出OE=OF即可. 解答: 证明::四边形AECF的形状是菱形, 理由是:∵平行四边形ABCD, ∴AD∥BC, ∴∠DAO=∠ACF,∠AEO=∠CFO, ∵EF过AC的中点O, ∴OA=OC, 在△AEO和△CFO中, , ∴△AEO≌△CFO(AAS), ∴OE=OF, ∵OA=CO, ∴四边形AECF是平行四边形, ∵EF⊥AC, ∴四边形AECF是菱形. 点评: 本题考查了平行线性质,平行四边形的性质,矩形、菱形的判定等知识点的应用,能熟练地运用性质进行推理是解此题的关键,题型较好,具有一定的代表性,但难度不大. (责任编辑:admin) |