解答: (1)证明:四边形ABCD是平行四边形, ∴CF ∥ED, ∴∠FCD=∠GCD, 又∠CGF=∠EGD. G是CD的中点, CG=DG, 在△FCG和 △EDG中, ∴△CFG≌△EDG(ASA), ∴FG=EG, ∵CG=DG, ∴四边形CEDF是平行四边形; ①解:当AE=3.5时,平行四边形CEDF是矩形, 理由是:过A作AM⊥BC于M, ∵∠B=60°,AB=3, ∴BM=1.5, ∵四边形ABCD是平行四边形, ∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5, ∵AE=3.5, ∴DE=1.5=BM, 在△MBA和△EDC中, ∴△MBA≌△EDC(SAS), ∴∠CED=∠AMB=90°, ∵四边形CEDF是平行四边形, ∴四边形CEDF是矩形, 故答案为:3.5; ②当AE=2时,四边形CEDF是菱形, 理由是:∵AD=5,AE=2, ∴DE=3, ∵CD=3,∠CDE=60°, ∴△CDE是等边三角形, ∴CE=DE, ∵四边形CEDF是平行四边形, ∴四边形CEDF是菱形, 故答案为:2. 点评: 本题考查了平行四边形的性质和判定,菱形的判定,矩形的判定,等边三角形的性质和判定,全等三角形的性质和判定的应用,注意:有一组邻边相等的平行四边形是菱形,有一个角是直角的平行四边形是矩形. 22.我市“利民快餐店”试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店日纯收入.(日纯收入=每天的销售额﹣套餐成本﹣每天固定支出) (1)若每份套餐售价不超过10元. ①试写出y与x的函数关系式; ②若要使该店每天的纯收入不少于800元,则每份套餐的售价应不低于多少元? 该店既要吸引顾客,使每天销售量较大,又要有较高的日纯收入.按此要求,每份套餐的售价应定为多少元?此时日纯收入为多少元? 考点: 二次函数的应用. 分析: (1)①利用每 份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本),以及每份套餐售价不超过10元,每天可销售400份得出等式求出即可; (责任编辑:admin) |