5.不等式组 的解集是( ) A. x> B. ﹣1≤x< C. x< D. x≥﹣1 考点: 解一元一次不等式组. 分析: 分别求出各不等式的解集,再求出其公共解集即可. 解答: 解: ,由①得,x> ,由②得,x≥﹣1, 故此不等式组的解集为:x> . 故选:A. 点评: 本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 6.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( ) A. 20 B. 12 C. 14 D. 13 考点: 直角三角形斜边上的中线;等腰三角形的性质. 分析: 根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE= AC,然后根据三角形的周长公式列式计算即可得解. 解答: 解:∵AB=AC,AD平分∠BAC,BC=8, ∴AD⊥BC,CD=BD= BC=4, ∵点E为AC的中点, ∴DE=CE= AC=5, ∴△CDE的周长=CD+DE+CE=4+5+5=14. 故选:C. 点评: 本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键. 7.若关于x的一元一次不等式组 有解,则m的取值范围为( ) A. B. m≤ C. D. m≤ 考点: 解一元一次不等式组. 分析: 先求出两个不等式的解集,再根据有解列出不等式组求解即可. 解答: 解: , 解不等式①得,x<2m, 解不等式②得,x>2﹣m, ∵不等式组有解, ∴2m>2﹣m, ∴m> . 故选C. 点评: 本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 8.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( ) A. 15° B. 25° C. 30° D. 10° 考点: 三角形的外角性质. 专题: 探究型. 分析: 先由三角形外角的性质求出∠BDF的度数,根据三角形内角和定理即可得出结论. 解答: 解:∵Rt△CDE中,∠C=90°,∠E=30°, ∴∠BDF=∠C+∠E=90°+30°=120°, ∵△BDF中,∠B=45°,∠BDF=120°, ∴∠BFD=180°﹣45°﹣120°=15°. 故选A. 点评: 本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键. 9.如图,在锐角△ABC中,A B=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是( ) A. B. 6 C. D. 3 考点: 轴对称-最短路线问题. 分析: 作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值,再根据AD是∠BAC的平分线可知M′H=M′N′,再由锐角三角函数的定义即可得出结论. 解答: 解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值. ∵AD是∠BAC的平分线, ∴M′H=M′N′, ∴BH是点B到直线AC的最短距离(垂线段最短), ∵AB=6,∠BAC=45°, ∴BH=AB?sin45°=6× =3 . ∵BM+MN的最小值是BM′+M′N′=BM′+M′H=BH=3 . 故选C. 点评: 本题考查的是轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值. (责任编辑:admin) |