初中学习网-初中学习方法、解题技巧、知识点总结、学习计划、同步辅导资料!

初中学习网-人民教育出版社人教版部编同步解析与测评答案-电子课本资料下载-知识点总结学习方法与技巧补课解题技巧学习计划表-人教网-初中试卷网-中学学科网

当前位置: 首页 > 初中数学 > 初二试题库 > 月考 >

榆林市201初二年级上册数学期中考试试卷(含答案解析)(8)

http://www.newdu.com 2020-05-15 新东方 佚名 参加讨论

    在解答此题时,有的人往往知道结论,书写不规范,建议教师在以后的教学中,在培养学生自主学习能力的同时,还要注重培养有条理表达和规范证明的能力.
    六、(本题满分12分)
    21. 已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°.点E是DC的中点,过点E作DC的垂线交AB于点P,交CB的延长线于点M.点F在线段ME上,且满足CF=AD,MF=MA.
    (1)若∠MFC=120°,求证:AM=2MB;
    (2)求证:∠MPB=90°﹣∠FCM.
    考点: 直角梯形;全等三角形的判定与性质;线段垂直平分线的性质;含30度角的直角三角形.
    专题: 证明题.
    分析: (1)连接MD,由于点E是DC的中点,ME⊥DC,所以MD=MC,然后利用已知条件证明△AMD≌△FMC,根据全等三角形的性质可以推出∴∠MAD=∠MFC=120°,接着得到∠MAB=30°,再根据30°的角所对的直角边等于斜边的一半即可证明AM=2BM;
    (2)利用(1)的结论得到∠ADM=∠FCM,又AD∥BC,所以∠ADM=∠CMD,由此得到∠CMD=∠FCM,再利用等腰三角形的性质即可得到∠CME=∠FCM,再根据已知条件即可解决问题.
    解答: 证明:(1)连接MD,
    ∵点E是DC的中点,ME⊥DC,
    ∴MD=MC,
    又∵AD=CF,MF=MA,
    ∴△AMD≌△FMC,
    ∴∠MAD=∠MFC=120°,
    ∵AD∥BC,∠ABC=90°,
    ∴∠BAD=90°,
    ∴∠MAB=30°,
    在Rt△AMB中,∠MAB=30°,
    ∴BM=AM,
    即AM=2BM;
    (2)连接MD,
    ∵点E是DC的中点,ME⊥DC,
    ∴MD=MC,
    又∵AD=CF,MF=MA,
    ∴△AMD≌△FMC,
    ∴∠ADM=∠FCM,
    ∵AD∥BC,
    ∴∠ADM=∠CMD
    ∴∠CMD=∠FCM,
    ∵MD=MC,ME⊥DC,
    ∴∠DME=∠CME=∠CMD,
    ∴∠CME=∠FCM,
    在Rt△MBP中,∠MPB=90°﹣∠CME=90°﹣∠FCM.
    点评: 此题主要考查了梯形的性质、全等三角形的性质与判定,及等腰三角形的性质与判定,综合性比较强. (责任编辑:admin)
织梦二维码生成器
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
初中语文
初中数学
初中英语
初中物理
初中化学
初中生物
初中历史
初中地理
初中道德与法治
初中历史与社会
初中日语、俄语
学习方法
初中竞赛