在解答此题时,有的人往往知道结论,书写不规范,建议教师在以后的教学中,在培养学生自主学习能力的同时,还要注重培养有条理表达和规范证明的能力. 六、(本题满分12分) 21. 已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°.点E是DC的中点,过点E作DC的垂线交AB于点P,交CB的延长线于点M.点F在线段ME上,且满足CF=AD,MF=MA. (1)若∠MFC=120°,求证:AM=2MB; (2)求证:∠MPB=90°﹣∠FCM. 考点: 直角梯形;全等三角形的判定与性质;线段垂直平分线的性质;含30度角的直角三角形. 专题: 证明题. 分析: (1)连接MD,由于点E是DC的中点,ME⊥DC,所以MD=MC,然后利用已知条件证明△AMD≌△FMC,根据全等三角形的性质可以推出∴∠MAD=∠MFC=120°,接着得到∠MAB=30°,再根据30°的角所对的直角边等于斜边的一半即可证明AM=2BM; (2)利用(1)的结论得到∠ADM=∠FCM,又AD∥BC,所以∠ADM=∠CMD,由此得到∠CMD=∠FCM,再利用等腰三角形的性质即可得到∠CME=∠FCM,再根据已知条件即可解决问题. 解答: 证明:(1)连接MD, ∵点E是DC的中点,ME⊥DC, ∴MD=MC, 又∵AD=CF,MF=MA, ∴△AMD≌△FMC, ∴∠MAD=∠MFC=120°, ∵AD∥BC,∠ABC=90°, ∴∠BAD=90°, ∴∠MAB=30°, 在Rt△AMB中,∠MAB=30°, ∴BM=AM, 即AM=2BM; (2)连接MD, ∵点E是DC的中点,ME⊥DC, ∴MD=MC, 又∵AD=CF,MF=MA, ∴△AMD≌△FMC, ∴∠ADM=∠FCM, ∵AD∥BC, ∴∠ADM=∠CMD ∴∠CMD=∠FCM, ∵MD=MC,ME⊥DC, ∴∠DME=∠CME=∠CMD, ∴∠CME=∠FCM, 在Rt△MBP中,∠MPB=90°﹣∠CME=90°﹣∠FCM. 点评: 此题主要考查了梯形的性质、全等三角形的性质与判定,及等腰三角形的性质与判定,综合性比较强. (责任编辑:admin) |