24.(8分)光明文具厂工人的工作时间:每月26天,每天8小时.待遇:按件计酬,多劳多得,每月另加福利工资920元,按月结算.该厂生产A,B两种型号零件,工人每生产一件A种型号零件,可得报酬0.85元,每生产一件B种型号零 件,可得报酬1.5元,下表记录的是工人小王的工作情况: 生产A种型号零件/件 生产B种型号零件/件 总时间/分 2 2 70 6 4 170 根据上表提供的信息,请回答如下问题: (1)小王每生产一件A种型号零件、每生产一 件B种型号零件,分别需要多少分钟? (2)设小王某月生产A种型号零件x件,该月工资为y元,求y与x的函数关系式; (3)如果生产两种型号零件的数目限制,那么小王该月的工资数目最多为多少? 考点: 一次函数的应用. 专题: 应用题. 分析: (1)设小王生产一个A种产品用a分钟,生产一个B种产品用b分钟,根据表格中的数据,列方程组求a、b的值; (2)根据:月工资y=生产一件A种产品报酬×x+生产一件B种产品报酬× +福利工资920元,列出函数关系式; (3)利用(2)得到的函数关系式,根据一次函数的增减性求解. 解答: 解:(1)设小王生产一个A种产品用a分钟,生产一个B种产品用b分钟; 根据题意得 ,解得 , 即小李生产一个A种产品用15分钟,生产一 个B种产品用20分钟. (2)y=0.85x+ ×1.5+920, 即y=﹣0.275x+1856. (3)由解析式y=﹣0.275x+1856可知:x越小,y值越大, 并且生产A,B两种产品的数目又没有限制,所以,当x=0时,y=1856. 即小王该月全部时间用来生产B种产品,最高工资为1856元. 点评: 本题考查了一次函数的运用.关键是根据题意列出函数关系式,利用一次函数的增减性解答题目的问题. 25.(9分)如图,MN是⊙O的直径,QN是⊙O的切线,连接MQ交⊙O于点H,E为 上一点,连接ME,NE,NE交MQ于点F,且ME2=EFoEN. (1)求证:QN=QF; (2)若点E到弦MH的距离为1,cos∠Q= ,求⊙O的半径. 考点: 切线的性质;相似三角形的判定与性质. 分析: (1)如图1,通过相似三角形(△MEF∽△MEN)的对应角相等推知,∠1=∠EMN;又由弦切角定理、对顶角相等证得∠2=∠3;最后根据等角对等边证得结论; (2)如图2,连接OE交MQ于点G,设⊙O的半径是r.根据(1)中的相似三角形的性质证得∠EMF=∠ENM,所以由"圆周角、弧、弦间的关系"推知点E是弧MH的中点,则OE⊥MQ;然后通过解直角△MNE求得cos∠Q=sin∠GMO= = ,则可以求r的值. 解答: (1)证明:如图1, ∵ME2=EFoEN, ∴ = . 又∵∠MEF=∠MEN, ∴△MEF∽△MEN, ∴∠1=∠EMN. ∵∠1=∠2,∠3=∠EMN, ∴∠2=∠3, ∴QN=QF; (2)解:如图2,连接OE交MQ于点G,设⊙O的半径是r. 由(1)知,△MEF∽△MEN,则∠4=∠5. ∴ = . ∴OE⊥MQ, ∴EG=1. ∵cos∠Q= ,且∠Q+∠GMO=90°, ∴sin∠GMO= , ∴ = ,即 = , 解得,r=2.5,即⊙O的半径是2.5. 点评: 本题考查切线的性质和相似三角形的判定与性质.在(1)中判定△MEF∽△MEN是解题的关键,在(2)中推知点E是弧MH的中点是解题的关键. (责任编辑:admin) |