7.(3分)一组数据2,0,1,x,3的平均数是2,则这组数据的方差是( ) A. 2 B. 4 C. 1 D. 3 考点: 方差;算术平均数. 分析: 先根据平均数的定义确定出x的值,再根据方差的计算公式S2= [(x1﹣ )2+(x2﹣ )2+…+(xn﹣ )2]求出这组数据的方差. 解答: 解:由平均数的公式得:(0+1+2+3+x)÷5=2,解得x=4; 则方差=[(0﹣2)2+(1﹣2)2+(2﹣2)2+(3﹣2)2+(4﹣2)2]÷5=2. 故选:A. 点评: 此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数. 8.(3分)如图,已知AB∥CD,若∠A=25°,∠E=40°,则∠C等于( ) A. 40° B. 65° C. 115° D. 25° 考点: 平行线的性质. 分析: 由平行线的性质可求得∠EFB=∠C,在△AEF中由三角形外角的性质可求得∠EFB,可求得答案 解答: 解:∵∠EFB是△AEF的一个外角, ∴∠EFB=∠A+∠E=25°+40°=65°, ∵AB∥CD, ∴∠C=∠EFB=65°, 故选B. 点评: 本题主要考查平行线的性质,掌握平行线的性质是解题的关键,即①两直线平行?同位角相等,②两直线平行?内错角相等,③两直线平行?同旁内角互补. 9.(3分)已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是( ) ①m是无理数; ②m是方程m2﹣12=0的解; ③m满足不等式组 ; ④m是12的算术平方根. A. ①② B. ①③ C. ③ D. ①②④ 考点: 算术平方根;平方根;无理数;不 等式的解集. 分析: ①根据边长为m的正方形面积为12,可得m2=12,所以m=2 ,然后根据 是一个无理数,可得m是无理数,据此判断即可. ②根据m2=12,可得m是方程m2﹣12=0的解,据此判断即可. ③首先求出不等式组 的解集是4<m<5,然后根据m=2 <2×2=4,可得m不满足不等式组 ,据此判断即可. ④根据m2=12,而且m>0,可得m是12的算术平方根,据此判断即可. 解答: 解:∵边长为m的正方形面积为12, ∴m2=12, ∴m=2 , ∵ 是一个无理数, ∴m是无理数, ∴结论①正确; ∵m2=12, ∴m是方程m2﹣12=0的解, ∴结论②正确; ∵不等式组 的解集是4<m<5,m=2 <2×2=4, ∴m不满足不等式组 , ∴结论③不正确; ∵m2=12,而且m>0, ∴m是12的算术平方根, ∴结论④正确. 综上,可得 关于m的说法中,错误的是③. 故选:C. 点评: (1)此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算, 在求一个非负数的算术平方根时,可以借助乘方运算来寻找. (2)此题还考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数. (3)此题还考查了不等式的解集的求法,以及正方形的面积的求法,要熟练掌握. (责任编辑:admin) |