24.(12分)李老师家距学校1900 米,某天他步行去上班,走到路程的一半时发现忘带手机,此时离上班时间还有23分钟,于是他立刻步行回家取手机,随后骑电瓶车返回学校.已知李老师骑电瓶车到学校比他步行到学校少用20分钟,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、启动电瓶车等共用4分钟. (1)求李老师步行的平均速度; (2)请你判断李老师能否按时上班,并说明理由. 考点: 分式方程的应用.菁优网版权所有 分析: (1)设李老师步行的平均速度为xm/分钟,骑电瓶车的平均速度为5xm/分钟,根据题意可得,骑电瓶车走1900米所用的时间比步行少20分钟,据此列方程求解; (2)计算出李老师从步行回家到骑车回到学校所用的总时间,然后和23进行比较即可. 解答: 解:(1)设李老师步行的平均速度为xm/分钟,骑电瓶车的平均速度为5xm/分钟, 由题意得, ﹣ =20, 解得:x=76, 经检验,x=76是原分式方程的解,且符合题意, 则5x=76×5=380, 答:李老师步行的平均速度为76m/分钟,骑电瓶车的平均速度为380m/分; (2)由(1)得,李老师走回家需要的时间为: =12.5(分钟), 骑车走到学校的时间为: =5, 则李老师走到学校所用的时间为:12.5+5+4=21.5<23, 答:李老师能按时上班. 点评: 本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验. 25.(12分)如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB、BA(或它们的延长线)于点E、F,∠EDF=60°,当CE=AF时,如图1小芳同学得出的结论是DE=DF. (1)继续旋转三角形纸片,当CE≠AF时,如图2小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由; (2)再次旋转三角形纸片,当点E、F分别在CB、BA的延长线上时,如图3请直接写出DE与DF的数量关系; (3)连EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最 小值,最小值是多少? 考点: 几何变换综合题. 分析: (1)如答图1,连接BD.根据题干条件首先证明∠ADF=∠BDE,然后证明△ADF≌△BDE(ASA),得DF=DE; (2)如答图2,连接BD.根据题干条件首先证明∠ADF=∠BDE,然后证明△ADF≌△BDE(ASA),得DF=DE; (3)根据(2)中的△ADF≌△BDE得到:S△ADF=S△BDE,AF=BE.所以△DEF的面积转化为:y=S△BEF+S△ABD.据此列出y关于x的二次函数,通过求二次函数的最值来求y的最小值. 解答: 解:(1)DF=DE.理由如下: 如答图1,连接BD. ∵四边形ABCD是菱形, ∴AD=AB. 又∵∠A=60°, ∴△ABD是等边三角形, ∴AD=BD,∠ADB=60°, ∴∠DBE=∠A=60° ∵∠EDF=60°, ∴∠ADF=∠BDE.∵在△ADF与△BDE中, , ∴△ADF≌△BDE(ASA), ∴DF=DE; (2)DF=DE.理由如下: 如答图2,连接BD.∵四边形ABCD是菱形, ∴AD=AB. 又∵∠A=60°, ∴△ABD是等边三角形, ∴AD=BD,∠ADB=60°, ∴∠DBE=∠A=60° ∵∠EDF=60°, ∴∠ADF=∠BDE. ∵在△ADF与△BDE中, , ∴△ADF≌△BDE(ASA), ∴DF=DE; (3)由(2)知,△ADF≌△BDE.则S△ADF=S△BDE,AF=BE=x. 依题意得:y=S△BEF+S△ABD= (2+x)xsin60°+ ×2×2sin60°= (x+1)2+ .即y= (x+1)2+ . ∵ >0, ∴该抛物线的开口方向向上, ∴当x=0即点E、B重合时,y最小值= . 点评: 本题考查了几何变换综合题,解题过程中,利用了三角形全等的判定与性质,菱形的性质以及等边三角形的判定与性质,对于促进角与角(边与边)相互转换,将未知角转化为已知角(未知边转化为已知边)是关键. (责任编辑:admin) |