二、填空题(每小题3分,共24分) 11.使式子1+有意义的x的取值范围是 x≠1 . 考点: 分式有意义的条件. 版权所有 分析: 分式有意义,分母不等于零. 解答: 解:由题意知,分母x﹣1≠0, 即x≠1时,式子1+有意义. 故答案为:x≠1. 点评: 本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念: (1)分式无意义?分母为零; (2)分式有意义?分母不为零; (3)分式值为零?分子为零且分母不为零. 12.若9x2+kx+16是一个完全平方式,则k的值是 24 或 ﹣24 . 考点: 完全平方式. 版权所有 分析: 这里首末两项是3x和4这的平方,那么中间一项为加上或减去3x和4积的2倍,故k=±24. 解答: 解:中间一项为加上或减去3x和4积的2倍, 故k=±24 故填24;﹣24. 点评: 本题考查了完全平方式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解. 13.如果一个多边形的内角和是其外角和的一半,那么这个多边形是 三 边形. 考点: 多边形内角与外角. 版权所有 分析: 利用多边形外角和定理得出其内角和,进而求出即可. 解答: 解:∵一个多边形的内角和是其外角和的一半,由任意多边形外角和为360°, ∴此多边形内角和为180°,故这个多边形为三角形, 故答案为:三. 点评: 此题主要考查了多边形内角与外角,得出多边形的内角和是解题关键. 14.如图方格纸中△ABC绕着点A逆时针旋转 90 度,再向右平移 6 格可得到△DEF. 考点: 旋转的性质;平移的性质. 版权所有 分析: 观察图象可知,先把△ABC绕着点A逆时针方向90°旋转,然后再向右平移即可得到. 解答: 解:根据图象,△ABC绕着点A逆时针方向90°旋转与△DEF形状相同,向右平移6格就可以与△DEF重合. 故答案为:90,6. 点评: 本题考查了几何变换的类型,几何变换只改变图形的位置,不改变图形的形状与大小,本题用到了旋转变换与平移变换. 15.不等式组的整数解是 0、1、2 . 考点: 一元一次不等式组的整数解. 版权所有 专题: 计算题. 分析: 可先根据一元一次不等式组解出x的取值范围,根据x是整数解得出不等式组的整数解. 解答: 解:不等式组, 解得,﹣<x≤2, 不等式组的整数解是0、1和2; 故答案为0、1、2. 点评: 本题考查的是一元一次不等式的解法和一元一次方程的解,根据x的取值范围,得出x的整数解,然后代入方程即可解出a的值.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE= 4cm . 考点: 直角三角形斜边上的中线;等腰三角形的性质. 版权所有 分析: 根据等腰三角形的性质可得AD⊥BC,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案. 解答: 解:∵AB=AC,AD平分∠BAC, ∴AD⊥BC, ∴∠ADC=90°, ∵点E为AC的中点, ∴DE=AC=4cm. 故答案为:4cm. 点评: 此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半. (责任编辑:admin) |