16. 如图,在菱形ABCD中 ,AB=10,AC=12,则它的面积是 96 . 考点: 菱形的性质. 分析: 首先根据勾股定理可求出BO的长,进而求出BD的长,再根据菱形的面积等于对角线乘积的一半列式计算即可得解. 解答: 解:∵四边形ABCD是菱形, ∴AC⊥BD, ∵AC=12, ∴AO=6, ∵AB=10, ∴BO= =8, ∴BD=16, ∴菱形的面积S= ACoBD= ×16×12=96. 故答案为:96. 点评: 本题考查了菱形的性质以及勾股定理的运用,熟练掌握菱形的面积等于对角线乘积的一半是解题的关键. 17. 如图,一次函数y=kx+2与 反比例函数y= (x>0)的图象交于点A,与y轴交于点M,与x轴交于点N,且AM:MN=1:2,则k= . 考点: 反比例函数与一次函数的交点问题. 分析: 利用相似三角形的判定与性质得出A点坐标,进而代入一次函数解析式得出答案. 解答: 解:过点A作AD⊥x轴, 由题意可得:MO∥AO, 则△NOM∽△NDA, ∵AM:MN=1:2, ∴ = = , ∵一次函数y=kx+2,与y轴交点为;(0,2), ∴MO=2, ∴AD=3, ∴y=3时,3= , 解得:x= , ∴A( ,3),将A点代入y=kx+2得: 3= k+2, 解得:k= . 故答案为: . 点评: 此题主要考查了反比例函数与一次函数交点问题以及相似三角形的判定与性质等知识,得出A点坐标是解题关键. 18. 如图,在矩形ABCD中,AD=2,CD=1,连接AC,以对角线AC为边,按逆时针方向作矩形ABCD的相似矩形AB1C1C,再连接AC1,以对角线AC1为边作矩形AB1C1C的相似矩形AB2C2C1,…,按此规律继续下去,则矩形ABnCnCn﹣1的面积为 . 考点: 相似多边形的性质. 专题: 规律型. 分析: 根据已知和矩形的性质可分别求得AC,AC1,AC2的长,从而可发现规律,根据规律即可求得第n个矩形的面积. 解答: 解: ∵四边形ABCD是矩形, ∴AD⊥DC, ∴AC= = = , ∵按逆时针方向作矩形ABCD的相似矩形AB1C1C, ∴矩形AB1C1C的边长和矩形ABCD的边长的比为 :2 ∴矩形AB1C1C的面积和矩形ABCD的面积的比5:4, ∵矩形ABCD的面积=2×1=2, ∴矩形AB1C1C的面积= , 依此类推,矩形AB2C2C1的面积和矩形AB1C1C的面积的比5:4 ∴矩形AB2C2C1的面积= ∴矩形AB3C3C2的面积= , 按此规律第n个矩形的面积为: 故答案为: . 点评: 本题考查了矩形的性质,勾股定理,相似多边形的性质,解此题的关键是能根据求出的结果得出规律. (责任编辑:admin) |