7. 如图,⊙O是△ABC的外接圆,⊙O的半径为3,∠A=45°,则 的长是( ) A. π B. π C. π D. π 考点: 弧长的计算;圆周角定理. 分析: 根据圆周角得出圆心角为90°,再利用弧长公式计算即可. 解答: 解:因为⊙O是△ABC的外接圆,⊙O的半径为3,∠A=45°, 所以可得圆心角∠BOC=90°, 所以 的长= , 故选B. 点评: 此题考查弧长公式,关键是根据圆周角得出圆心角为90°. 8. 如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是( ) A. 60° B. 65° C. 55° D. 50° 考点: 多边形内角与外角;三角形内角和定理. 分析: 根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数. 解答: 解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°, ∴∠BCD+∠CDE=540°﹣300°=240°, ∵∠BCD、∠CDE的平分线在五边形内相交于点O, ∴∠PDC+∠PCD= (∠BCD+∠CDE)=120°, ∴∠P=180°﹣120°=60°. 故选:A. 点评: 本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用. 9. 已知k、b是一元二次方程(2x+1)(3x﹣1)=0的两个根,且k>b,则函数y=kx+b的图象不经过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 考点: 一次函数图象与系数的关系;解一元二次方程-因式分解法. 分析: 首先利用因式分解法解一元二次方程求出k和b的值,然后判断函数y= x﹣ 的图象不经过的象限即可. 解答: 解:∵k、b是一元二次方程(2x+1)(3x﹣1)=0的两个根,且k>b, ∴k= ,b=﹣ , ∴函数y= x﹣ 的图象不经过第二象 限, 故选B. 点评: 本题主要考查了一次函数图象与系数的关系以及因式分解法解一元二次方程的知识,解答本题的关键是利用因式分解法求出k和b的值,此题难度不大. 10. 如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的 运动路程为x,△AE F的面积为y,能大致刻画y与x的函数关系的图象是( )[来源:学科网ZXXK] A. B. C. D. 考点: 动点问题的函数图象. 专题: 应用题. 分析: 分F在线段PD上,以及线段DQ上两种情况,表示出y与x的函数解析式,即可做出判断. 解答: 解:当F在PD上运动时,△AEF的面积为y= AEoAD=2x(0≤x≤2), 当F在DQ上运动时,△AEF的面积为y= AEoAF= x(x﹣2)= x2﹣x(2<x≤4), 图象为: 故选A 点评: 此题考查了动点问题的函数问题,解决本题的关键是读懂图意,得到相应y与x的函数解析式. (责任编辑:admin) |