29.(12分)如图,在平面直角坐标系中.顶点为(﹣4,﹣1)的抛物线交y轴于点A(0,3),交x轴于B,C两点. (1)求此抛物线的解析式; (2)已知点P是抛物线上位于B,C两点之间的一个动点,问:当点P运动到什么位置时,四边形ABPC的面积最大?并求出此时四边形ABPC的面积. (3)过点B作AB的垂线交抛物线于点D,是否存在 以点C为圆心且与线段BD和抛物线的对称轴l同时相切的圆?若存在,求出圆的半径;若不存在,请说明理由. 考点: 二次函数综合题.. 分析: (1)利用待定系数法求函数的解析式即可; (2)由题意可知当P点移动到抛物线的顶点是△PBC的面积最大,根据四边形ABPC的面积的最大值为:S△ABC+S△PBC求得即可; (3)已知∠ABD是直角,若连接圆心和切点(暂定为E),不难看出Rt△OAB、Rt△EBC相似,可据此求出⊙C的半径,再将该半径与点C到对称轴l的距离进行比较即可. 解答: 解:(1)根据题意,可设抛物线的解析式为y=a(x+4)2﹣1, 把点A(0,3)代入得:3=16a﹣1, 解得a= , 所以此抛物线的解析式为y= (x+4)2﹣1; (2)令y=0,则0= (x+4)2﹣1; 解得x1=﹣2,x2=﹣ 6, ∴B(﹣2,0),C(﹣6,0), ∴BC=4, ∵S四边形ABPC=S△ABC+S△PBC,S△ABC= BCoOA= ×4×3=6, ∴要使四边形ABPC的面积最大,则△PBC的面积最大, ∴当P点移动到抛物线的顶点是△PB C的面积最大, ∴四边形ABPC的面积的最大值为:S△ABC+S△PBC=6+ ×4×1=6+2=8; (3)如图,设⊙C与BD相切于点E,连接CE,则∠BEC=∠AOB=90°. ∵A(0,3)、B(﹣2,0)、C(﹣6,0), ∴OA=3,OB=2,OC=6,BC=4; ∴AB= = , ∵AB⊥BD, ∴∠ABC=∠EBC+90°=∠OAB+90°, ∴∠EBC=∠OAB, ∴△OAB∽△EBC, ∴ = ,即 = ∴EC= . 设抛物线对称轴交x轴于F. ∵抛物线的对称轴x=﹣4, ∴CF=2≠ , ∴不存在以点C为圆心且与线段BD和抛物线的对称轴l同时相切的圆. 点评: 此题是二次函数的综合题,主要考查的是利用待定系数法确定函数解析式、相似三角形的判定和性质、直线与圆的位置关系以及四边形的面积等重要知识点. (责任编辑:admin) |