6.(3分)已知点P(a+1,﹣ +1)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是( ) A. B. C. D. 考点: 在数轴上表示不等式的解集;解一元一次不等式组;关于原点对称的点的坐标.. 分析: 首先根据题意判断出P点在第二象限,再根据第二象限内点的坐标符号(﹣,+),可得到不等式a+1<0,﹣ +1>0,然后解出a的范围即可. 解答: 解:∵P(a+1,﹣ +1)关于原点对称的点在第四象限, ∴P点在第二象限, ∴a+1<0,﹣ +1>0, 解得:m<﹣1, 则a的取值范围在数轴上表示正确的是 . 故选:C. 点评: 此题主要考查了关于原点对称的点的坐标特点,以及各象限内点的坐标符号,关键是判断出P点所在象限. 7.(3分)在△ABC中,若角A,B满足|cosA﹣ |+(1﹣tanB)2=0,则∠C的大小是( ) A.45° B. 60° C. 75° D. 105° 考点: 特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方.. 分析: 根据非负数的性质得出cosA= ,tanB=1,求出∠A和∠B的度数,继而可求得∠C的度数. 解答: 解:由题意得,cosA= ,tanB=1, 则∠A=30°,∠B=45°, 则∠C=180°﹣30°﹣45°=105°. 故选D. 点评: 本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值. 8.(3分)书架上有3本小说、2本散文,从中随机抽取2本都是小说的概率是( ) A. B. C. D. 考点: 列表法与树状图法.. 分析: 首先根据题意画出树状图,然后由树状图求得所有等可能的结果与随机抽取2本都是小说的情况,再利用概率公式即可求得答案. 解答: 解:设三本小说分别为红、红、红、两本散文分别为白、白, 画树状图得: ∵共有20种等可能的结果,从中随机抽取2本都是6种情况, ∴从中随机抽取2本都是小说的概率= , 故选A. 点评: 此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比. 9.(3分)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是( ) A.b2<4ac B. ac>0 C. 2a﹣b=0 D. a﹣b+c=0 考点: 二次函数图象与系数的关系.. 分析: 根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向上得a>0,由抛物线与y轴的交点在x轴下方得c<0,则可对B进行判断;根据抛物线的对称性是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对D选项进行判断. 解答: 解:∵抛物线与x轴有两个交点, ∴b2﹣4ac>0,即b2>4ac,所以A选项错误; ∵抛物线开口向上, ∴a>0, ∵抛物线与y轴的交点在x轴下方, ∴c<0, ∴ac<0,所以B选项错误; ∵二次函数图象的对称轴是直线x=1, ∴﹣ =1,∴2a+b=0,所以C选项错误; ∵抛物线过点A(3,0),二次函数图象的对称轴是x=1, ∴抛物线与x轴的另一个交点为(﹣1,0), ∴a﹣b+c=0,所以D选项正确; 故选:D. 点评: 本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣ ;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点. (责任编辑:admin) |