15.(3分)如图,Rt△ABC中,∠ACB=90°,AC=BC=2 ,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为 8 π (结果保留π). 考点: 圆锥的计算;点、线、面、体.. 分析: 首先求得高CD的长,然后根据圆锥的侧面积的计算方法,即可求解. 解答: 解:过点C作CD⊥AB于点D, Rt△ABC中,∠ACB=90°,AC=BC, ∴AB= AC=4, ∴CD=2, 以CD为半径的圆的周长是:4π. 故直线旋转一周则所得的几何体得表面积是:2× ×4π×2 =8 π. 故答案为:8 π. 点评: 此题主要考查了圆锥的有关计算,正确确定旋转后的图形得出以CD为半径的圆的弧长是解题的关键. 16.(3分)若﹣2xm﹣ny2与3x4 y2m+n是同类项,则m﹣3n的立方根是 2 . 考点: 立方根;合并同类项;解二元一次方程组.. 专题: 计算题. 分析: 根据同类项的定义可以得到m,n的值,继而求出m﹣3n的立方根. 解答: 解:若﹣2xm﹣ny2与3x4y2m+n是同类项, ∴ , 解方程得: . ∴m﹣3n=2﹣3×(﹣2)=8. 8的立方根是2. 故答案为:2. 点评: 本题考查了同类项的概念以及立方根的求法,解体的关键是根据定义求出对应m、n的值. 17.(3分)有六张完全相同的卡片,其正面分别标有数字:﹣2, ,π,0, ,3. ,将它们背面朝上洗匀后,从中随机抽取一张卡片,则其正面的数字为无理数的概率是 . 考点: 概率公式;无理数.. 专题: 计算题. 分析: 判断六张卡片中无理数的个数,即可得到结果. 解答: 解:在﹣2, ,π,0, ,3. 中,无理数有 ,π共2个, 则从中随机抽取一张卡片,则其正面的数字为无理数的概率是 = . 故答案为: 点评: 此题考查了概率公式,以及无理数,熟练掌握无理数的定义是解本题的关键. 18.(3分)如图,定点A(﹣2,0),动点B在直线y=x上运动,当线段AB最短时,点B的坐标为 (﹣1,﹣1) . 考点 : 一次函数图象上点的坐标特征;垂线段最短.. 分析: 过A作AD⊥直线y=x,过D作DE⊥x轴于E,即当B点和D点重合时,线段AB的长最短,求出∠DOA=∠OAD=∠EDO=∠EDA=45°,OA=2,求出OE=DE=1,求出D的坐标即可. 解答: 解:过A作AD⊥直线y=x,过D作DE⊥x轴于E, 则∠DOA =∠OAD=∠EDO=∠EDA=45°, ∵A(﹣2,0), ∴OA=2, ∴OE=DE=1, ∴D的坐标为(﹣1,﹣1), 即动点B在直线y=x上运动,当线段AB最短时,点B的坐标为(﹣1,﹣1), 故答案为:(﹣1,﹣1). 点评: 本题考查了等腰直角三角形,垂线段最短,坐标与图形性质的应用,解此题的关键求出符合条件的点的位置. (责任编辑:admin) |