10.(3分)如图,在△ABC中,两条中线BE,CD相交于点O,则S△DOE:S△DCE=( ) A.1:4 B. 1:3 C. 1:2 D. 2:3 考点: 相似三角形的判定与性质;三角形中位线定理.. 分析: 先根据题意判断出DE是△ABC的中位线,故可得出△ODE∽△OCB,由此可得出 = ,进而可得出结论. 解答: 解:∵在△ABC中,两条中线BE,CD相交于点O, ∴DE是△ABC的中位线, ∴△ODE∽△OCB, ∴ = , ∴ = , ∵△DOE与△DCE等高, ∴S△DOE:S△DCE=OD:CD=1:3. 故选B. 点评: 本题考查的是相似三角形的判定与性质,先根据题意得出DE是△ABC的中位线是解答此题的关键. 11.(3分)如果二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+c和反比例函数y= 在同一坐标系中的图象大致是( ) A. B. C. D. 考点: 二次函数的图象;一次函数的图象;反比例函数的图象.. 分析: 根据二次函数的图象的性质先确定出a、b、c的取值范围,然后根据一次函数和反比例函数的性质即可做出判断. 解答: 解:∵抛物线开口向下, ∴a<0, ∵抛物线的对称轴由于y轴的左侧; ∴a与b同号, ∴b<0, ∵抛物线经过原点,所以c=0. ∵b<0,c=0, ∴直线y=bx+c经过二、四象限和坐标原点. ∵b<0, ∴反比例函数的图象,位于二、四象限. 故选:A. 点评: 本题主要考查的是二次函数、一次函数和反比例函数的性质,掌握相关性质是解题的关键. (责任编辑:admin) |