23.(8分)已知关于x的一元二次方程 mx2+mx+m﹣1=0有两个相等的实数根. (1)求m的值; (2)解原 方程. 考点: 根的判别式.. 分析: (1)根据题意得到:△=0,由此列出关于m的方程并解答; (2)利用直接开平方法解方程. 解答: 解:(1)∵关于x的一元二次方程 mx2+mx+m﹣1=0有两个相等的实数根, ∴△=m2﹣4× m×(m﹣1)=0,且m≠0, 解得m=2; (2)由(1)知,m=2,则该方程为:x2+2x+1=0, 即(x+1)2=0, 解得x1=x2=﹣1. 点评: 本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 24.(10分)现在的青少年由于沉迷电视、手机、网络游戏等,视力日渐减退,某市为了解学生的视力变化情况,从全市九年级随机抽取了1500名学生,统计了每个人连续三年视力检查的结果,根据视力在4.9以下的人数变化制成折线统计图,并对视力下降的主要因素进行调查,制成扇形统计图. 解答下列问题: (1)图中D所在扇形的圆心角度数为 54° ; (2)若2015年全市共有30000名九年级学生,请你估计视力在4.9以下的学生约有多少名? (3)根据扇形统计图信息,你觉得中学生应该如何保护视力? 考点: 折线统计图;用样本估计总体;扇形统计图.. 专题: 计算题. 分析: (1)根据扇形统计图中的数据求出D占的百分比,乘以360即可得到结果; (2)根据样本中视力在4.9以下的人数占的百分比,乘以30000即可得到结果; (3)由扇形统计图中影响视力的因素,提出合理化建议即可. 解答: 解:(1)根据题意得:360°×(1﹣40%﹣25%﹣20%)=54°; 故答案为:54°; (2)根据题意得:30000× =16000(名), 则估计视力在4.9以下的学生约有16000名; (3)建议中学生应少看电视,少玩游戏,少看手机,才能保护视力. 点评: 此题考查了折线统计图,扇形统计图,以及用样本估计总体,弄清题中统计图中的数据是解本题的关键. 25.(10分)如图,在正方形ABCD中,点E是边BC的中点,直线EF交正方形外角的平分线于点F,交DC于点G,且AE⊥EF. (1)当AB=2时,求△GEC的面积; (2)求证:AE=EF. 考点: 全等三角形的判定与性质;正方形的性质.. 分析: (1)首先根据△ABE∽△ECG得到AB:EC=BE:GC,从而求得GC= 即可求得S△GEC; (2)取AB的中点H,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECF,从而得到AE=EF; 解答: 解:(1)∵AB=BC=2,点E为BC的中点, ∴BE=EC=1, ∵AE⊥EF, ∴△ABE∽△ECG, ∴AB:EC=BE:GC, 即:2:1=1:GC, 解得:GC= , ∴S△GEC= oECoCG= ×1× = ; (2)证明:取AB的中点H,连接EH; ∵ABCD是正方形, AE⊥EF; ∴∠1+∠AEB=90°, ∠2+∠AEB=90° ∴∠1=∠2, ∵BH=BE,∠BHE=45°, 且∠FCG=45°, ∴∠AHE=∠ECF=135°,AH=CE, ∴△AHE≌△ECF, ∴AE=EF; 点评: 此题考查了正方形的性质和全等三角形的判定与性质,解(2)题的关键是取AB的中点H,得出AH=EC,再根据全等三角形的判定得出△AHE≌△ECF. (责任编辑:admin) |