21.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BF的平行线,交CE的延长线于点F,且AF=BD,连接BF.如果AB=AC,试判断四边形AFBD的形状,并证明你的结论. 考点: 矩形的判定;全等三角形的判定与性质.菁优网版权所有 分析: 因为AF∥BC,E为AD的中点,即可根据AAS证明△AEF≌△DEC,故有BD=DC,AF=DC且AF∥DC,可得四边形AFDC是平行四边形,又因为AD=CF,故可有一个角是直角的平行四边形是矩形进行判定. 解答: 答:四边形AFBD是矩形, 证明:∵AF∥BC, ∴∠AFE=∠DCE,∠FAE=∠CDE. 又∵点E是AD的中点, ∴AE=DE, 在△AFE与△DCE中, ∴△AFE≌△DCE(AAS), ∴AF=CD, 又∵AF=BD, ∴BD=CD. 又∵AB=AC, ∴AD⊥BC, ∴∠ADB=90°, ∵AF∥BD,AF=BD, ∴四边形AFBD是平行四边形, 又∵∠ADB=90°, ∴四边形AFBD是矩形. 点评: 本题考查矩形的判定和全等三角形的判定与性质.要熟知这些判定定理才会灵活运用,根据性质才能得到需要的相等关系. 22.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF. (1)线段BD与CD有什么数量关系,并说明理由; (2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由. 考点: 矩形的判定;全等三角形的判定与性质.菁优网版权所有 专题: 证明题. 分析: (1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证; (2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC. 解答: 解:(1)BD=CD. 理由如下:依题意得AF∥BC, ∴∠AFE=∠DCE, ∵E是AD的中点, ∴AE=DE, 在△AEF和△DEC中, , ∴△AEF≌△DEC(AAS), ∴AF=CD, ∵AF=BD, ∴BD=CD; (2)当△ABC满足:AB=AC时,四边形AFBD是矩形. 理由如下:∵AF∥BD,AF=BD, ∴四边形AFBD是平行四边形, ∵AB=AC,BD=CD(三线合一), ∴∠ADB=90°, ∴?AFBD是矩形. 点评: 本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键. (责任编辑:admin) |