15.如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC. (1)求证:∠1=∠2; (2)连结BE、DE,判断四边形BCDE的形状,并说明理由. 考点: 菱形的判定;线段垂直平分线的性质. 专题: 证明题. 分析: (1)证明△ADC≌△ABC后利用全等三角形的对应角相等证得结论; (2)首先判定四边形BCDE是平行四边形,然后利用对角线垂直的平行四边形是菱形判定菱形即可. 解答: (1)证明:∵在△ADC和△ABC中, , ∴△ADC≌△ABC(SSS), ∴∠1=∠2; (2)四边形BCDE是菱形; 证明:∵∠1=∠2, ∴AC垂直平分BD, ∵OE=OC, ∴四边形DEBC是平行四边形, ∵AC⊥BD, ∴四边形DEBC是菱形. 点评: 本题考查了菱形的判定及线段的垂直平分线的性质,解题的关键是了解菱形的判定方法,难度不大. 16.如图,在三角形纸片ABC中,AD平分∠BAC,将△ABC折叠,使点A与点D重合,展开后折痕分别交AB、AC于点E、F,连接DE、DF.求证:四边形AEDF是菱形. 考点: 菱形的判定;翻折变换(折叠问题). 专题: 证明题. 分析: 由∠BAD=∠CAD,AO=AO,∠AOE=∠AOF=90°证△AEO≌△AFO,推出EO=FO,得出平行四边形AEDF,根据EF⊥AD得出菱形AEDF. 解答: 证明:∵AD平分∠BAC ∴∠BAD=∠CAD 又∵EF⊥AD, ∴∠AOE=∠AOF=90° ∵在△AEO和△AFO中 , ∴△AEO≌△AFO(ASA), ∴EO=FO 又∵A点与D点重合, ∴AO=DO, ∴EF、AD相互平分, ∴四边形AEDF是平行四边形 又EF⊥AD, ∴平行四边形AEDF为菱形. 点评: 本题考查了平行四边形的判定,菱形的判定,线段垂直平分线,全等三角形的性质和判定等知识点,注意:对角线互相平分的四边形是平行四边形,对角线互相垂直的平行四边形是菱形. 17.如图,在四边形ABCD中,AD∥BC,AM⊥BC,垂足为M,AN⊥DC,垂足为N,若∠BAD=∠BCD,AM=AN,求证:四边形ABCD是菱形. 考点: 菱形的判定. 专题: 证明题. 分析: 首先证明∠B=∠D,可得四边形ABCD是平行四边形,然后再证明△ABM≌△ADN可得AB=AD,再根据菱形的判定定理可得结论. 解答: 证明:∵AD∥BC, ∴∠B+∠BAD=180°,∠D+∠C=180°, ∵∠BAD=∠BCD, ∴∠B=∠D, ∴四边形ABCD是平行四边形, ∵AM⊥BC,AN⊥DC, ∴∠AMB=∠AND=90°, 在△ABM和△ADN中, , ∴△ABM≌△ADN(AAS), ∴AB= AD, ∴四边形ABCD是菱形. 点评: 此题主要考查了菱形的判定,关键是掌握一组邻边相等的平行四边形是菱形. (责任编辑:admin) |