15.将一副三角尺如图所示叠放在一起,若AB=4cm,则阴影部分的面积是2cm2. 考点:解直角三角形. 分析:由于BC∥DE,那么△ACF也是等腰直角三角形,欲求其面积,必须先求出直角边AC的长;Rt△ABC中,已知斜边AB及∠B的度数,易求得AC的长,进而可根据三角形面积的计算方法求出阴影部分的面积. 解答: 解:∵∠B=30°,∠ACB=90°,AB=4cm, ∴AC=2cm. 由题意可知BC∥ED, ∴∠AFC=∠ADE=45°, ∴AC=CF=2cm. 故S△ACF= ×2×2=2(cm2). 故答案为:2. 点评:本题考查了相似三角形的判定和性质以及解直角三角形,发现△ACF是等腰直角三角形,并能根据直角三角形的性质求出直角边AC的长,是解答此题的关键. 16.将y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是x>﹣2. 考点:一次函数图象与几何变换. 分析:首先得出平移后解析式,进而求出函数与坐标轴交点,即可得出y>0时,x的取值范围. 解答: 解:∵将y=x的图象向上平移2个单位, ∴平移后解析式为:y=x+2, 当y=0时,x=﹣2, 故y>0,则x的取值范围是:x>﹣2. 故答案为:x>﹣2. 点评:此题主要考查了一次函数图象与几何变换,正确得出平移后解析式是解题关键. 17.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为4. 考点:翻折变换(折叠问题). 分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解. 解答: 解:设BN=x,由折叠的性质可得DN=AN=9﹣x, ∵D是BC的中点, ∴BD=3, 在Rt△BND中,x2+32=(9﹣x)2, 解得x=4. 故线段BN的长为4. 故答案为:4. 点评:此题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强. 18.已知过点(1,1)的直线y=ax+b(a≠0)不经过第四象限.设s=2a+b,则s的取值范围是0<s<3. 考点:一次函数图象与系数的关系. 分析:根据一次函数的性质进行解答即可. 解答: 解:∵一次函数y=ax+b经过一、二、三象限,不经过第四象限,且过点(1,1), ∴a>0,b≥0,a+b=1, 可得: , 可得:0<a≤1,0<1﹣b≤1, 可得:0<a≤1,0≤b<1, 所以s=2a+b,可得:0<2a+b<3, s的取值范围为:0<s<3, 故答案为:0<s<3. 点评:本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象经过一、二、三象限. 三、解答题(6小题、共46分) 19.如图,已知在△ABC中,∠A=120°,∠B=20°,∠C=40°,请在三角形的边上找一点P,并过点P和三角形的一个顶点画一条线段,将这个三角形分成两个等腰三角形.(要求两种不同的分法并写出每个等腰三角形的内角度数) 考点:作图—应用与设计作图. 分析:因为,∠A=120°,可以以A为顶点作∠BAP=20°,则∠PAC=100°,∠APC=40°,∴△APB,△APC都是等腰三角形;还可以以A为顶点作∠BAP=80°,则∠PAC=40°,∠APC=100°,∴△APB,△APC都是等腰三角形. 解答: 解: 给出一种分法得(角度标注 1分). 点评:此题主要考查等腰三角形的判定以及作一个角等于已知角的作法. (责任编辑:admin) |