20.如图已知,CE⊥AB,BF⊥AC,BF交CE于点D,且BD=CD. (1)求证:点D在∠BAC的平分线上; 若将条件“BD=CD”与结论“点D在∠BAC的平分线上”互换,成立吗?试说明理由. 考点: 全等三角形的判定与性质. 分析: (1)根据AAS推出△DEB≌△DFC,根据全等三角形的性质求出DE=DF,根据角平分线性质得出即可; 根据角平分线性质求出DE=DF,根据ASA推出△DEB≌△DFC,根据全等三角形的性质得出即可. 解答: (1)证明:∵CE⊥AB,BF⊥AC, ∴∠DEB=∠DFC=90°, 在△DEB和△DFC中, , ∴△DEB∽△DFC(AAS), ∴DE=DF, ∵CE⊥AB,BF⊥AC, ∴点D在∠BAC的平分线上; 解:成立, 理由是:∵点D在∠BAC的平分线上,CE⊥AB,BF⊥AC, ∴DE=DF, 在△DEB和△DFC中, , ∴△DEB≌△DFC(ASA), ∴BD=CD. 点评: 本题考查了全等三角形的性质和判定,角平分线性质的应用,解此题的关键是推出△DEB≌△DFC,注意:角平分线上的点到角两边的距离相等,反之亦然. 21.设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题: (1)在这次调查中,一共抽取了 50 名学生,α= 24 %; 补全条形统计图; (3)扇形统计图中C级对应的圆心角为 72 度; (4)若该校共有2000名学生,请你估计该校D级学生有多少名? 考点: 条形统计图;用样本估计总体;扇形统计图. 专题: 图表型. 分析: (1)根据B级的人数和所占的百分比求出抽取的总人数,再用A级的人数除以总数即可求出a; 用抽取的总人数减去A、B、D的人数,求出C级的人数,从而补全统计图; (3)用360度乘以C级所占的百分比即可求出扇形统计图中C级对应的圆心角的度数; (4)用D级所占的百分比乘以该校的总人数,即可得出该校D级的学生数. 解答: 解:(1)在这次调查中,一共抽取的学生数是: =50(人), a= ×100%=24%; 故答案为:50,24; 等级为C的人数是:50﹣12﹣24﹣4=10(人), 补图如下: (3)扇形统计图中C级对应的圆心角为 ×360°=72°; 故答案为:72; (4)根据题意得:2000× =160(人), 答:该校D级学生有160人. 点评: 此题考查了是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. (责任编辑:admin) |