※3、概念内涵: 通分的关键是确定最简分母,其方法如下:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母的最高次幂的积,如果分母是多项式,则首先对多项式进行因式分解. 四、分式方程 ※1、解分式方程的一般步骤: ①在方程的两边都乘最简公分母,约去分母,化成整式方程; ②解这个整式方程; ③把整式方程的根代入最简公分母,看结果是不是零,使最简公母为零的根是原方程的增根,必须舍去. ※2、列分式方程解应用题的一般步骤: ①审清题意; ②设未知数; ③根据题意找相等关系,列出(分式)方程; ④解方程,并验根; ⑤写出答案. 第四章 相似图形 一、线段的比 ※1、如果选用同一个长度单位量得两条线段AB, CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n ,或写成 . ※2、 四条线段a、b、c、d中,如果a与b的比等于c与d的比,即 ,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段. ※3、注意点: ①a:b=k,说明a是b的k倍; ②由于线段 a、b的长度都是正数,所以k是正数; ③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致; ④除了a=b之外,a:b≠b:a, 与 互为倒数; ⑤比例的基本性质:若 , 则ad=bc; 若ad=bc, 则 二、黄金分割 ※1、如图1,点C把线段AB分成两条线段AC和BC,如果 ,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比. ※2、黄金分割点是最优美、最令人赏心悦目的点. 四、相似多边形 ¤1、一般地,形状相同的图形称为相似图形. ※2、对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比. 五、相似三角形 ※1、在相似多边形中,最为简简单的就是相似三角形. ※2. 对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比. ※3、全等三角形是相似三角的特例,这时相似比等于1. 注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上. ※4、相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比. ※5、相似三角形周长的比等于相似比. ※6、相似三角形面积的比等于相似比的平方. 六、探索三角形相似的条件 ※1、相似三角形的判定方法: (责任编辑:admin) |