25.如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明的身高为1.6m,求路灯杆AB的高度. 26.常富物流公司运送60kg货物后,考虑到为了节约运送时间,公司调整了原有的运送方式,调整后每天运送的货物重量是原来的2倍.结果一共用9天完成了480kg货物的运送任务,问常富物流公司原来每天运送货物是多少? 27.如图,直线y=kx+2k(k≠0)与x轴交于点B,与双曲线y=(m+5)x2m+1交于点A、C,其中点A在第一象限,点C在第三象限. (1)求双曲线的解析式; (2)求B点的坐标; (3)若S△AOB=2,求A点的坐标; (4)在(3)的条件下,在x轴上是否存在点P,使△AOP是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由. 28.如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒). (1)当t为何值时,四边形PQDC是平行四边形. (2)当t为何值时,以C,D,Q,P为顶点的梯形面积等于60cm2? (3)是否存在点P,使△PQD是等腰三角形(不考虑QD=PD)?若存在,请求出所有满足要求的t的值,若不存在,请说明理由. 29.如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0)、B(0,1)、C(d,2). (1)求d的值; (2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B′C′的解析式; (3)在(2)的条件下,直线BC交y轴于点G.问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC′是平行四边形?如果存在,请求出点M和点P的坐标;如果不存在,请说明理由. 苏州市2015初二年级数学下册期中重点试卷(含答案解析)参考答案与试题解析 一、选择题:本大题共10小题;每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的答案填涂在答题卷相应的位置上. 1.在式子 中,分式的个数为( ) A. 2个 B. 3个 C. 4个 D. 5个 考点: 分式的定义. 分析: 判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式. 解答: 解: , , 这3个式子分母中含有字母,因此是分式. 其它式子分母中均不含有字母,是整式,而不是分式. 故选:B. 点评: 本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数. 2.下列运算正确的是( ) A. = B. = C. =x+y D. = 考点: 分式的基本性质. 分析: 根据分式的基本性质即分子分母同时扩大或缩小相同的倍数,分式的值不变,分别对每一项进行分析,即可得出答案. 解答: 解:A、 =﹣ ,故本选项错误; B、 ,不能约分,故本选项错误; C、 ,不能约分,故本选项错误; D、 = = ,故本选项正确; 故选D. 点评: 此题考查了分式的性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0. 3.若A(a,b)、B(a﹣1,c)是函数 的图象上的两点,且a<0,则b与c的大小关系为( ) A. b<c B. b>c C. b=c D. 无法判断 考点: 反比例函数图象上点的坐标特征;反比例函数的性质. 分析: 比例系数为﹣1,a<0,易得两点均在第二象限,那么根据y随x的增大而增大可得到相应的y的值的大小. 解答: 解:∵k=﹣1<0, ∴函数的两个分支在二四象限; ∵a<0, ∴a﹣1<a<0, ∴b>c. 故选B. 点评: 解决本题的关键是判断出函数所在的象限及两点是否在同一象限,用到的知识点为:k<0,图象分支在二四象限,在每个象限内,y随x的增大而增大. (责任编辑:admin) |