说“0”
http://www.newdu.com 2024/11/13 05:11:57 人民教育出版社 佚名 参加讨论
说“0” 安徽铜陵市三中高一(3)班 对“0”,我从小就很感兴趣。 记得小学一年级时,在一节数学课上,数学老师给我们出了一道特别有趣的题目:一位渔翁去钓鱼,钓了6条没头的,9条没尾的,8条半截的,共钓了多少条 鱼?当场许多同学异口同声地回答;6+9+8,共钓23条鱼。老师摇摇头说:不对,请小朋友多想想!教室里鸦雀无声,每个人都在积极思考。好多分钟过去了,还是无人回答。我一边深入地想,一边用手指在桌上写划,猛开心窍,立即回答:这位渔翁一条鱼也没钓着,得数是“0”。我并作出解释:“6”条没头的,就把“6”的上半部去掉,成为“0”;“9"条没尾的,就去掉“9”的下半部,成为“0”;“8”条半截的,不管你去掉“8”的上半截或下半截,还是得“0”。所以,就是一条也没钓着──“0”。全班同学都感到新奇,哈哈大笑,老师也满意地笑了。 从此,我对“0”便产生了兴趣。从小学到中学,我对“0”的意义、作用和运用中的变化及其所表示的内容,尤为关注,从而对“0”不断地有了新的理解和新的认识。“0”是符号。它是数学上阿拉伯数字十个基本符号中的一个符号,其音读“零”,其形圆圈,书写占一个数字的位置,应有合适的比例。“鸭蛋”是“0”特有的雅号,考生最忌讳这个雅号。“0”是数目。它是一个数,是一个整数,是在整数系统中一个不可缺少的数。它既不是正数,也不是负数,是唯一的中性数,是正数与负数的分界数,它比所有的正数都小,比所有的负数都大。 “0”是不是自然数?这是个有分歧的问题。过去在数学理论上,是把“0”不作为自然数的。在《十万个为什么·数学分册》第2页中就明文写道:“0不是自然数。”我对此有不同的看法。我却认为:“0”是自然数。这得从什么是自然数说起,在人类历史发展的早期阶段,由于经验的积累和计数的需要,产生了用来表示物件的有无和物件个数的自然数的原始概念。简言之,自然数是人类最早认识的数。在早期人类社会,人们认数、计数1、2、3、4、5、……,这是自然数。既是认数、计数,首先是物体的有无,有,才可计数1、2、3、……;无,即是“0”数。应该说,“0”与1、2、3、……同是最早人们对数的原始概念,同是人类最早认识的数,同是自然数。最新版《全日制普通高级中学教科书(试验修订本)·数学》中,确认了“0”是自然数,这是准妥的。 “0”是奇数,还是偶数?判断标准:凡能被2整除的数是偶数,不能被2整除的数是奇数。所谓整除就是商数必须是整数,而且没有余数。因为:0+2—0,商数是整数,所以:“0”是偶数。 “0’与无穷小是否一回事?无穷小是一个不断变化的量,不断地变小,在不考虑负数情况下,无穷小就越来越接近于”0”;“0”是一个确定的数,它是一个常量。“0”可以作为无穷小的唯一的数。“0”本身就是无穷小量,无穷小量却未必是“0”。再者,在四则运算中,“0”可以进行加、减、乘、除运算,但不能作为除数或分母;无穷小在四则运算中,可以作为除数或分母。 “0”的定义是什么?《辞海》上的一种解释:“它在任何计量单位中表示‘没有’。”《国语辞典》上是;“在算术上其意义为无,以0表之。”数学老师也常说:“0”──表示“没有”。一减一、二减二……都等于“0”,给“0”下定义:“0”表示“没有”。这是无疑的。 然而,“0”的意义是不是仅表示“没有”呢?“0”不仅表示“没有”,而且还表示多方面的内容及其作用,列举略述于下:温度表上的“0”度(零度),表示一个特定的温度──冰的熔点。所谓“0”度,自然不能说是“没有”温度。人们常说的“0”时(零时),即:24时。这是个明确的时间概念,不会说成“没有”时间。 在数轴上,“0”用一个确定的点──原点“0”表示,“0”的相反数还是“0”(-0=0),“0”的绝对值仍是“0”(|0|=0)。 在记数时,用“0”可以表示数位,如:0.02、、0.2、20、200、2000……中的“0”,均表示数位,有相同或不相同的数位。 “0”是补空位的数目。数的空位,必须补上“0”,如:105、、1005。……;又如、,必补“0”的数位,如疏忽未补,其数位错,其数目必错。 “0”在四则运算中,起着特殊的作用:在加、减法中,一个数加“0”、减“0”,均仍得原数;在乘、除法中,“0”乘任何数的积为“0”,“0”除以任何非“0”数,得商为“0”。 在通用科学记数法的十进位制中,“0”担任着极其重要的“角色”。逢十就进一位,而在该位写上“0”。“0”在十进制中,代表着:从一往上,较大单位依次是:十、百、千、万、十万、百万、千万、亿……;从一往下,较小单位依次是:分、厘、毫、丝、忽、微、……。 在当代电子计算机高科技中,“0”就是一位特别重要的新型的“代表”。它的作用就更大了。因为电子计算机采用0与1这两个基本数码的二进位制,任何数码都由这两个基本数码组成。二进位制所需要的记数的基本符号只要两个:0与1。可以用1表示通电,0表示断电;或1表示磁化,0表示未磁化;或1表示凹点,0表示上凸点。 还有,长途电话号码首位的“0”,车牌号码左边的“0”,身份证号码中的“0”,信息号码中的“0”,等等,各登其位,各表其义,各有其用。 由此可见,“0”所表示的内容,方方面面,丰富多彩。它的作用,非常重要,不可代替。人们对“0”的理解,对“0”的运用,不可疏忽,必须准确无误。“0”应该在服务数学、服务科技、服务经济、服务人类的伟大进程中,立下汗马功劳。
|
- 上一篇:从田忌赛马谈到对策论
- 下一篇:数数格点算出面积