赌马中的数学问题
http://www.newdu.com 2024/11/25 10:11:41 人民教育出版社 佚名 参加讨论
赌马中的数学问题 随着中国的改革开放,境外许多事物渐渐被生活在大陆的人知晓诸如赌马、六合彩等常在媒体中提及。对我们来说,了解一些原来不熟悉的东西也是必要的。其实,一些博彩游戏和古老的赌博有许多相似之处,我们可以用初等概率知识对其中的现象作一定的分析。 我们以赌马问题为例。为简便起见,假设只有两匹马参加比赛。通过对决定马匹胜负的各因素的研究以及对以往赛事胜负情况的统计分析,我们可得出两匹马各自胜出的实际概率。不失一般性,设其中一匹马胜出的实际概率为,则另一匹马胜出的实际概率为。那么,参赌者该如何下注以最大的限度确保他们能赢得钱呢? 要解决这个问题必须先弄明白庄家的赔率是如何设定的。所谓赔率,是指押注一元钱于胜方所获得的总金额。举例来说,若赔率为1.65元,则如押注一元的一方恰好胜出,可得收益0.65元,加上本金,一共可得1.65元。若押注负方,则会失去所押注的1元,但不须另外再输钱。现在,我们知道了马匹胜出的实际概率,知道了庄家设定的赔率,就可以分析参赌者该如何下注。这里,设总金额为1元,并设在第一匹马上押注元,则在第二匹马上押注。至于具体押注多少,参赌者可以将总金额按该比例分配给这两匹马。于是,可得下表:
如果第一匹马赢,参赌者可得到元,再减去付出的1元,参赌者的收益为元;同理,如果第二匹马赢,参赌者收益为元。考虑到两匹马胜出的实际概率分别为和,参赌者的期望收益为,其中。另外,若参赌者把所有钱都押注于第一匹马时期望收益为;若参赌者把所有的钱都押注于第二匹马时,期望收益为。 自然,参赌者希望收益,这样,他们才能以一个正的概率赢利。所以要求:。 1)当,且,即当且时,不论取何值,恒大于0,且当趋向1时,趋向于极大值。实际上,当,即参赌者把钱全押注于第一匹马上时,有收益,所以参赌者应当把钱全部押注于第一匹马上。 2)当且,即当且时,收益随着的变大而变小,且当趋于0时,趋于极大值。实际上,当,即参赌者把钱全押注于第二匹马上时,有收益。所以参赌者应当把钱全押在第二匹马上。 3)当,时,为使,应满足: 。又∵,∴,即。即当,且时,参赌者按分配赌注可期望赢利。且当趋向于1时,收益趋于极大值。同1)情况可知,这时,参赌者应把钱全押注于第一匹马上,有收益。 4)当,且时。 这时不论赌注如何分配,参赌者的期望收益恒为负。在这情况下,参赌者介入其中是不理智的行为。 以上是参赌者在已知胜出概率及赔率时选择的策略。同样,庄家在设置赔率时,一定会对实际各匹马胜出的概率作一番认真研究,由此设定相应赔率。这样,他才有可能不赔本。由此当庄家设置一个赔率时,我们也可以反推庄家所估计的各匹马胜出的概率。例如,庄家赔率设定为15,则我们大致可以知道该马匹胜出概率大致应小于。 其实,在其它涉及赔率、押注的简单模型中,我们也可以用相应的方法进行分析。当然,这只是对实际情况的一种简化。现实生活中的赌马不会仅有两匹,并且要求出各马匹实际胜出的概率是件非常困难的事,在一般情况下,只能求得近似解。 (责任编辑:admin) |
- 上一篇:巧用数学看现实
- 下一篇:建议班级购买一台饮水机