初中学习网-人民教育出版社人教版部编同步解析与测评答案-电子课本资料下载-知识点总结学习方法与技巧补课解题技巧学习计划表-人教网-初中试卷网-中学学科网

首页 > 初中数学 > 初二试题库 > 月考 >

聊城市2015八年级数学上册期中考试卷(含答案解析)(7)


    23.如图,点D在△ABC的AB边上,且∠ACD=∠A.
    (1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);
    (2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).
    考点: 作图—基本作图;平行线的判定.
    专题: 作图题.
    分析: (1)根据角平分线基本作图的作法作图即可;
    (2)根据角平分线的性质可得∠BDE= ∠BDC,根据三角形内角与外角的性质可得∠A= ∠BDC,再根据同位角相等两直线平行可得结论.
    解答: 解:(1)如图所示:
    (2)DE∥AC
    ∵DE平分∠BDC,
    ∴∠BDE= ∠BDC,
    ∵∠ACD=∠A,∠ACD+∠A=∠BDC,
    ∴∠A= ∠BDC,
    ∴∠A=∠BDE,
    ∴DE∥AC.
    点评: 此题主要考查了基本作图,以及平行线的判定,关键是正确画出图形,掌握同位角相等两直线平行.
    24.列方程解应用题:
    A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.
    考点: 分式方程的应用.
    专题: 行程问题.
    分析: 设公共汽车的速度为x公里/小时,则小汽车的速度是3x公里/小时.根据题意,知小汽车所用的时间比公共汽车所用的时间少3小时﹣20分= 小时,列方程求解.
    解答: 解:设公共汽车的速度为x公里/小时,则小汽车的速度是3x公里/小时.
    依题意,得
    ,
    解,得
    x=20.
    经检验x=20是原方程的根,且符合题意.
    ∴3x=60.
    答:公共汽车和小汽车的速度分别是20公里/时,60公里/时.
    点评: 找到合适的等量关系是解决问题的关键.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.
    此题中关键是弄清两车的时间关系.
    25.(1)问题发现
    如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.
    填空:①∠AEB的度数为 60° ;②线段AD,BE之间的数量关系为 AD=BE .
    (2)拓展探究
    如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,A E,BE之间的数量关系,并说明理由.
    考点: 全等三角形的判定与性质;等边三角形的性质;等腰直角三角形.
    分析: (1)易证∠ACD=∠BCE,即可求证△ACD≌△BCE,根据全等三角形对应边相等可求得AD=BE,根据全等三角形对应角相等即可求得∠AEB的大小;
    (2)易证△ACD≌△BCE,可得∠ADC=∠BEC,进而可以求得∠AEB=90°,即可求得DM=ME=CM,即可解题.
    解答: 解:(1)∵∠ACB=∠DCE,∠DCB=∠DCB,
    ∴∠ACD=∠BCE,
    在△ACD和△B CE中,
    ,
    ∴△ACD≌△BCE(SAS),
    ∴AD=BE,∠CEB=∠ADC=180°﹣∠CDE=120°,
    ∴∠AEB=∠CEB﹣∠CED=60°;
    (2)∠AEB=90°,AE=BE+2CM,
    理由:如图2,
    ∵△ACB和△DCE均为等腰直角三角形,
    ∴CA=CB,CD=CE,∠ACB=∠DCE=90°,
    ∴∠ACD=∠BCE.
    在△ACD和△BCE中,
    ,
    ∴△ACD≌△BCE(SAS),
    ∴AD=BE,∠ADC=∠BEC.
    ∵△DCE为等腰直角三角形,
    ∴∠CDE=∠CED=45°,
    ∵点A、D、E在同一直线上,
    ∴∠ADC=135°.
    ∴∠BEC=135°,
    ∴∠AEB=∠BEC﹣∠CED=90°.
    ∵CD=CE,CM⊥DE,
    ∴DM=ME.
    ∵∠DCE=90°,
    ∴DM=ME=CM,
    ∴AE=AD+DE=BE+2CM.
    点评: 本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD≌△BCE是解题的关键.
     (责任编辑:admin)