吉林省2015八年级数学上期中测试卷(含答案解析)(8)
http://www.newdu.com 2024/11/26 01:11:38 新东方 佚名 参加讨论
22.某号台风的中心位于O地,台风中心以25千米/小时的速度向西北方向移动,在半径为240千米的范围内将受影响、城市A在O地正西方向与O地相距320千米处,试问A市是否会遭受此台风的影响?若受影响,将有多少小时? 考点: 二次根式的应用;勾股定理. 分析: A市是否受影响,就要看台风中心与A市距离的最小值,过A点作ON的垂线,垂足为H,AH即为最小值,与半径240千米比较,可判断是否受影响;计算受影响的时间,以A为圆心,240千米为半径画弧交直线OH于M、N,则AM=AN=240千米,从点M到点N为受影响的阶段,根据勾股定理求MH,根据MN=2MH计算路程,利用:时间=路程÷速度,求受影响的时间. 解答: 解:如图,OA=320,∠AON=45°, 过A点作ON的垂线,垂足为H,以A为圆心,240为半径画弧交直线OH于M、N, 在Rt△OAH中,AH=OAsin45°=160 <240,故A市会受影响, 在Rt△AHM中,MH= = =80 ∴MN=160,受影响的时间为:160÷25=6.4小时. 答:A市受影响,受影响时间为6.4小时. 点评: 本题考查了二次根式在解决实际问题中的运用,根据题意,构造直角三角形,运用勾股定理计算,是解题的关键. 23.感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF.(不要求证明) 拓展:如图②,点B、C分别在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC,求证:△ABE≌△C AF. 应用:如图③,在等腰三角形ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为 6 . 考点: 全等三角形的判定与性质;等腰三角形的性质;正方形的性质. 专题: 压轴题. 分析: 拓展:利用∠1=∠2=∠BAC,利用三角形外角性质得出∠4=∠ABE,进而利用AAS证明△ABE≌△CAF; 应用:首先根据△ABD与△ADC等高,底边比值为:1:2,得出△ABD与△ADC面积比为:1:2,再证明△ABE≌△CAF,即可得出△ABE与△CDF的面积之和为△ADC的面积得出答案即可. 解答: 拓展: 证明:∵∠1=∠2, ∴∠BEA=∠AFC, ∵∠1=∠ABE+∠3,∠3+∠4=∠BAC,∠1=∠BAC, ∴∠BAC=∠ABE+∠3, ∴∠4=∠ABE, ∴ , ∴△ABE≌△CAF(AAS). 应用: 解:∵在等腰三角形ABC中,AB=AC,CD=2BD, ∴△ABD与△ADC等高,底边比值为:1:2, ∴△ABD与△ADC面积比为:1:2, ∵△ABC的面积为9, ∴△ABD与△ADC面积分别为:3,6; ∵∠1=∠2, ∴∠BEA=∠AFC, ∵∠1=∠ABE+∠3,∠3+∠4=∠BAC,∠1=∠BAC, ∴∠BAC=∠ABE+∠3, ∴∠4=∠ABE, ∴ , ∴△ABE≌△CAF(AAS), ∴△ABE与△CAF面积相等, ∴△ABE与△CDF的面积之和为△ADC的面积, ∴△ABE与△CDF的面积之和为6, 故答案为:6. 点评: 此题主要考查了三角形全等的判定与性质以及三角形面积求法,根据已知得出∠4=∠ABE,以及△ABD与△ADC面积比为:1:2是解题关键. (责任编辑:admin) |