吉林省2015八年级数学上期中测试卷(含答案解析)(5)
http://www.newdu.com 2024/11/26 01:11:02 新东方 佚名 参加讨论
12.如图是2014~2015学年度七年级(1)班学生参加课外兴趣小组人数的扇形统计图.如果参加外语兴趣小组的人数是12人,那么参加绘画兴趣小组的人数是 5 人. 考点: 扇形统计图. 专题: 计算题. 分析: 根据参加外语兴趣小组的人数是12人,所占百分比为24%,计算出总人数,再用1 减去所有已知百分比,求出绘画的百分比,再乘以总人数即可解答. 解答: 解:∵参加外语小组的人数是12人,占参加课外兴趣小组人数的24%, ∴参加课外兴趣小组人数的人数共有:12÷24%=50(人), ∴绘画兴趣小组的人数是50×(1﹣14%﹣36%﹣16%﹣24%)=5(人). 故答案为:5. 点评: 本题考查了扇形统计图,从图中找到相关信息是解此类题 目的关键. 13.如图,△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABD的周长为12,AE=5,则△ABC的周长为 22 . 考点: 线段垂直平分线的性质. 分析: 由AC的垂直平分线交AC于E,交BC于D,根据垂直平分线的性质得到两组线段相等,进行线段的等量代换后结合其它已知可得答案. 解答: 解:∵DE是AC的垂直平分线, ∴AD=DC,AE=EC=5, △ABD的周长=AB+BD+AD=12, 即AB+BD+DC=12,AB+BC=12 ∴△ABC的周长为AB+BC+AE+EC=12+5+5=22. △ABC的周长为22. 点评: 此题主要考查线段的垂直平分线的性质等几何知识;进行线段的等量代换是正确解答本的关键. 14.如图,在△ABC中,∠C=90°, ∠CA B=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于 EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为 65° . 考点: 全等三角形的判定与性质;直角三角形的性质;作图—复杂作图. 分析: 根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可. 解答: 解:解法一:连接EF. ∵点E、F是以点A为圆心,小于AC的长为半径画弧,分别与AB、AC的交点, ∴AF=AE; ∴△AEF是等腰三角形; 又∵分别以点E、F为圆心,大于 EF的长为半径画弧,两弧相交于点G; ∴AG是线段EF的垂直平分线, ∴AG平分∠CAB, ∵∠CAB=50°, ∴∠CAD=25°; 在△ADC中,∠C=90°,∠CAD=25°, ∴∠ADC=65°(直角三角形中的两个锐角互余); 解法二:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠CAB=50°, ∴∠CAD=25°; 在△ADC中,∠C=90°,∠CAD=25°, ∴∠ADC=65°(直角三角形中的两个锐角互余); 故答案是:65°. 点评: 本题综合考查了作图﹣﹣复杂作图,直角三角形的性质.根据作图过程推知AG是∠CAB平分线是解答此题的关键. 三、解答题(共9小题,满分78分) 15.分解因式:3x2y+12xy2+12y3. 考点: 提公因式法与公式法的综合运用. 分析: 原式提取公因式,再利用完全平方公式分解即可. 解答: 解:原式=3y(x2+4xy+4y2) =3y(x+2y)2. 点评: 此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. (责任编辑:admin) |