八年级数学教学设计:立方根
http://www.newdu.com 2024/11/24 10:11:52 新东方 佚名 参加讨论
一、教学目标 1.了解立方根和开立方的概念; 2.会用根号表示一个数的立方根,掌握开立方运算; 3.培养学生用类比的思想求立方根的运算能力; 4.由立方与立方根的教学,渗透数学的转化思想; 5.通过立方根符号的引入体验数学的简洁美. 二、教学重点和难点 教学重点:立方根的概念与性质. 教学难点:会求某些数的立方根. 三、教学方法 启发式,讲练结合 四、教学手段 幻灯片. 五、教学过程 (一)复习提问 请同学们回忆一下,平方根我们是如何定义的?平方根有哪些性质? 在同学们回答后,启发学生是否可试着给数的立方根下个定义. 1.立方根的概念: 如果一个数的立方等于a,这个数就叫做a的立方根.(也称数a的三次方根) 用数学式表示为: 若x3=a,则x叫做a的立方根,或称x叫做a的三次方根. 2.立方根的表示方法: 类似于平方根德表示方法,数a的立方根我们用符号 来表示.读作“三次根号下a”,其中a叫做被开方数,3叫做根指数,注意,在前面我们学习平方根的表示方法说过当根指数为2时可以省略不写,现在是立方根了,这个根指数3是绝对不可省的,否则就会与平方根混淆了,例如 表示125的立方根,而 则表示125的算术平方根. 练习:用根号表示下列各数的立方根: 3.开立方概念: 求一个数的立方根的运算,叫做开立方. 4.开立方运算与立方运算互为逆运算. 因此,我们可以根据立方运算来求一些数的立方根. (责任编辑:admin) |