初中学习网-初中学习方法、解题技巧、知识点总结、学习计划、同步辅导资料!

初中学习网-人民教育出版社人教版部编同步解析与测评答案-电子课本资料下载-知识点总结学习方法与技巧补课解题技巧学习计划表-人教网-初中试卷网-中学学科网

当前位置: 首页 > 初中数学 > 初二试题库 > 月考 >

蚌埠新城教育2015八年级数学上学期期中试卷(含答案解析)(3)

http://www.newdu.com 2020-05-15 新东方 佚名 参加讨论

    蚌埠新城教育2015八年级数学上学期期中试卷(含答案解析)参考答案
    一CBCBD   DCCBA   11 . X<3  12 . _1  13 . 2  14,  36  15
    16   7   17 . 4   18  (1)(3)(4)
    19(1)写出点A、B的坐标:
    A( 2 , ﹣1 )、B( 4 , 3 )---------------------------------2分
    (2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′( 0 , 0 )、B′( 2 , 4 )、C′( ﹣1 , 3 )-------------5分.(3)△ABC的面积为 5 ------------------8分.
    20   解:(1)∵直线y=kx+b经过点A(5,0),B(1,4),
    ∴直线AB的解析式为:y=﹣x+5;------------4分(2)∵若直线y=2x﹣4与直线AB相交于点C,点C(3,2);------------8分(3)根据图象可得x>3.--------------10分
    21  解答: 解:∵∠A=40°,∠B=72°,∴∠ACB=180°﹣(∠A+∠B),
    =180°﹣(30°+62°)=180°﹣92°=88°,∵CE平分∠ACB,
    ∴∠ECB=∠ACB=44°,∵CD⊥AB于D,∴∠CDB=90°,
    ∴ ∠BCD=90°﹣∠B=90°﹣62°=28°,
    ∴∠ECD=∠ECB﹣∠BCD=44°﹣28°=16°,∵DF⊥CE于F,∴∠CFD=90°,
    ∴∠CDF=90°﹣∠ECD=90°﹣16°=74°.--- ---------------------------------------10分
    22 . 解:(1)y=(45﹣30)x+(70﹣50)(100﹣x),=15x+2000﹣20x,
    =﹣5x+2000----6分,
    (2)∵B型台灯的进货数量不超过A型台灯数量的3倍,
    ∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,
    ∴x=25时,y取得最大值为﹣5×25+2000=1875(元).-------------------------------12分
    23. 解:(1)在△AOD中,∠AOD=180°﹣∠A﹣∠D,
    在△BOC中,∠BOC=180°﹣∠B﹣∠C,∵∠AOD=∠BOC(对顶角相等),
    ∴180°﹣∠A﹣∠D=180°﹣∠B﹣∠C,∴∠A+∠D=∠B+∠C;-----------3分
    (2)∵∠D=40°,∠B=36°,∴∠OAD+40°=∠OCB+36°,
    ∴∠OCB﹣∠OAD=4°,∵AP、CP分别是∠DAB和∠BCD的角平分线,
    ∴∠DAM=∠OAD,∠PCM=∠OCB,又∵∠DAM+∠D=∠PCM+∠P,
    ∴∠P=∠DAM+∠D﹣∠PCM=(∠OAD﹣∠OCB)+∠D=×(﹣4°)+40°=38°-----7分;
    (3)根据“8字形”数量关系,∠OAD+∠D=∠OCB+∠B,∠DAM+∠D=∠PCM+∠P,
    所以,∠OCB﹣∠OAD=∠D﹣∠B,∠PCM﹣∠DAM=∠D﹣∠P,
    ∵AP、CP分别是∠DAB和∠BCD的角平分线,∴∠DAM=∠OAD,∠PCM=∠OCB,
    ∴(∠D﹣∠B)=∠D﹣∠P,整理得,2∠P=∠B+∠D.----------------------12分
    24 解:(1)由S与x之间的函数的图象可知:当位于C点时,两车之间的距离增加变缓,∴由 此可以得到a=6,
    ∴快车每小时行驶100千米,慢车每小时行驶60千米,两地之间的距离为600,
    ∴b=600÷(100+60)=15/4------------------------------------------ -----------4分
    (2)∵从函数的图象上可以得到A、B、C、D点的坐标分别为:(0,600)、(3.75,0)、(6,360)、(10,600),
    ∴设线段AB所在直线解析式为:S=kx+b,解得:k=﹣160,b=600,S=-160x+600
    设线段BC所在的直线的解析式为:S=kx+b,
    解得:k=160,b=﹣600,s=160x-600
    设直线CD的解析式为:S=kx+b,解得:k=60,b=0  ,s=60x-----------------------10分
    (3)当两车相遇前分别进入两个不同的加油站,
    此时:S=﹣160x+600=200,
    解得:x=2.5,
    当两车相遇后分别进入两个不同的加油站,
    此时:S=160x﹣600=200,
    解得:x=5,
    ∴当x=2.5或5时,此时E加油站到甲地的距离为450km或300km.-----------14分
     (责任编辑:admin)
织梦二维码生成器
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
初中语文
初中数学
初中英语
初中物理
初中化学
初中生物
初中历史
初中地理
初中道德与法治
初中历史与社会
初中日语、俄语
学习方法
初中竞赛