证明:∵四边形ABDE和ACFG都是正方形 ∴AB=AE,AG=AC ∠BAE=∠CAG=90° ∴∠BAE+∠BAC=∠CAG+∠BAC 即∠BAG=∠EAC ∴△ABG≌△AEC ∴BG=CE 图2 说明:应用正方形的性质,可以为证明全等提供条件,要注意等式性质的应用,这与向锐角三角形ABC外作等边三角形的结论完全相同,证法是可以借鉴的。 巩固练习 巩固练习题目可有教师根据学生情况自主选择。 讲解新课 师:正方形是特殊的平行四边形、矩形、菱形,那么根据平行四边形、矩形、菱形和正方形它们之间的关系,怎么判定一个矩形是正方形? 生:证一组邻边相等。 师:怎么判定一个菱形是正方形? 生:证有一个角是直角。 师:怎么判定一个平行四边形是正方形? 生:根据定义,证有一组邻边相等且有一个角是直角。 师:那么,刚才的结论如果用图来表示,是不是如图2所示? 师:图3表现出由平行四边形、矩形、菱形分别得到正方形的三种方法。这是我们根据平行四边形、矩形、菱形和正方形它们之间的关系得到的,但似乎有缺憾,能不能同样根据平行四边形、矩形、菱形和正方形它们之间的关系把图3补全? [学生活动:积极思考,部分学生疑惑不解。] 师点取上等学生回答问题,根据回答得图4。 生恍然大悟。 学生思路得到启发,中上等及上等学生意犹未尽,鼓励他们根据矩形、菱形的判定方法直接得到正方形的判定思路,并要求其举出简单示例。 就势跟进,要求学生思考,给定四边形,有什么样的边、角、对角线条件可判定四边形是正方形?要求给出简单图例,并说出相应证明思路。 (责任编辑:admin) |