例题解析 例1:(即课本例1) 说明:本题难度不大,又有助于学生加深对性质定理的理解,教学中应引导学生探索解法: 如图4.5-4,欲求对角线BD的长,由于∠BAD=90°,AB=4cm,则只要再找出Rt△ABD中一条直角边的长,或一个锐角的度数,再从已知条件∠AOD=120°出发,应用矩形的性质可知,∠ADB=30°,另外,还可以引导学生探究△AOB是什么特殊的三角形(等边三角形),课本用了第一种解法,并给出了解几何计算题书写格式的示范;第二种解法如下: ∵四边形ABCD是矩形, ∴AC=BD(矩形的对角线相等)。 又 。 ∴OA=BO,△AOB是等腰三角形, ∵∠AOD=120°,∴∠AOB=180°- 120°= 60° ∴∠AOB是等边三角形。 ∴ BO=AB=4cm, ∴ BD=2BO=24×4cm=8cm。 例2:(补充例题) 已知:如图4.5-5四边形ABCD中,∠ABC=∠ADC=90°, E是AC的中点,EF平分∠BED交BD于点F。 (l)猜想:EF与BD具有怎样的关系? (2)试证明你的猜想。 解:(l)EF垂直平分BD。 (2)证明:∵∠ABC=90°,点E是AC的中点。 ∴ (直角三角形的斜边上的中线等于斜边的一半)。 同理: 。 ∴BE=DE。 又∵EF平分∠BED。 ∴EF⊥BD,BF=DF。 说明:本例是一道不给出“结论”,需要学生自己观察---猜想---讨论的几何命题,有助于发展学生的推理(包括合情推理和逻辑推理)能力。如果学生不适应,或有困难,教师可根据实际情况加以引导,这种训练,重要的不是猜对了没有?证明了没有?而是让学生经历这样一种自己研究图形性质的过程,顺便指出:求解本题的重要基础是识图技能----能从复杂图形中分解出如图4.5-6所示的三个基本图形。 课堂练习 1.课本例1后练习题第2题。 2.课本例1后练习题第4题。 小结 1.矩形的定义: 2.归纳总结矩形的性质: 对边平行且相等 四个角都是直角 对角线平行且相等 3.直角三角形斜边上的中线等于斜边的一半。 4.矩形的一条对角线把矩形分成两个全等的直角三角形;矩形的两条对角线把矩形分成四个全等的等腰三角形。因此,有关矩形的问题往往可化为直角三角形或等腰三角形的问题来解决。 作业 l.课本习题4.3A组第2题。 2.课本复习题四A组第6、7题。 (责任编辑:admin) |