3.9角的平分线 教学目标 1.掌握角的平分线的性质定理和它的逆定理的内容、证明及应用. 2.理解原命题和逆命题的概念和关系,会找一个简单命题的逆命题. 3.渗透角平分线是满足特定条件的点的集合的思想。 教学重点和难点 角平分线的性质定理和逆定理的应用是重点. 性质定理和判定定理的区别和灵活运用是难点. 教学过程设计 一、角平分钱的性质定理与判定定理的探求与证明 1,复习引入课题. (1)提问关于直角三角形全等的判定定理. (2)让学生用量角器画出图3-86中的∠AOB的角 平分线OC. 2.画图探索角平分线的性质并证明之. (1)在图3-86中,让学生在角平分线OC上任取一 点P,并分别作出表示P点到∠AOB两边的距离的线段 PD,PE. (2)这两个距离的大小之间有什么关系?为什么?学生度量后得出猜想,并用直角三角形全等的知识进行证明,得出定理. (3)引导学生叙述角平分线的性质定理(定理1),分析定理的条件、结论,并根据相应图形写出表达式. 3.逆向思维探求角平分线的判定定理. (1)让学生将定理1的条件、结论进行交换,并思考所得命题是否成立?如何证明?请一位同学叙述证明过程,得出定理2——角平分线的判定定理. (2)教师随后强调定理1与定理2的区别:已知角平分线用性质为定理1,由所给条件判定出角平分线是定理2. (3)教师指出:直接使用两个定理不用再证全等,可简化解题过程. 4.理解角平分线是到角的两边距离都相等的点的集合. (1)角平分线上任意一点(运动显示)到角的两边的距离都相等(渗透集合的纯粹性). (2)在角的内部,到角的两边距离相等的点(运动显示)都在这个角的平分线上(而不在其它位置,渗透集合的完备性). 由此得出结论:角的平分线是到角的两边距离相等的所有点的集合. 二、应用举例、变式练习 练习1填空:如图3-86(1)∵OC平分∠AOB,点P在射线OC上,PD⊥OA于D PE⊥OB于E.∴---------(角平分线的性质定理). (2)∵PD⊥OA,PE⊥OB,----------∴ OP平分∠AOB(-------------) 例1已知:如图3-87(a), ABC的角平分线BD和CE交于F. (l)求证:F到AB,BC和 AC边的距离相等; (2)求证:AF平分∠BAC; (3)求证:三角形中三条内角的平分线交于一点,而且这点到三角形三边的距离相等; (4)怎样找△ABC内到三边距离相等的点? (5)若将“两内角平分线BD,CE交于F”改为“△ABC的两个外角平分线BD,CE交于F,如图3-87(b),那么(1)~(3)题的结论是否会改变?怎样找△ABC外到三边所在直线距离相等的点?共有多少个? 说明: (责任编辑:admin) |