23.(8分)现有树苗若干棵,计划在一段公路的一侧,要求路的两端各载1棵,并且每2棵树的间隔相等.方案一:如果每隔5m载1 棵,则树苗缺21棵;方案二:如果每隔5.5m载一颗,则树苗正好用完,根据以上方案,请算出原有树苗的棵数和这段路的长度. 考点: 一元一次方程的应用. 分析: 设原 有树苗x棵,由栽树问题栽树的棵数=分得的段数+1,可以表示出路的长度,由路的长度相等建立方程求出其解即可. 解答: 解:设原有树苗x棵,则路的长度为5(x+21﹣1)米,由题意,得 5(x+21﹣1)=5.5(x﹣1), 解得:x=211. 则5.5(x﹣1)=5.5×(211﹣1)=1155 答:原有树苗的棵数是211棵,这段路的长度是1155米. 点评: 本题考查了栽树问题的运用,栽树的棵数=分得的段数+1的运用,列一元一次方程解实际问题的运用,解答时由路的长度不变建立方程是关键. 24.(6分)为了解城市居民日常出行使用交通工具方式的情况,进行了问卷调查,共收回600份调查问卷,结果统计如下: 出行方式 坐公交车 骑自行车、电动车 开私家车 坐单位班车 人数 250 270 70 10 根据以上调查结果,制作扇形统计图表示使用交通工具的人数占总调查人数的百分比. 考点: 扇形统计图. 分析: 求出使用交通工具的人数占总调查人数的百分比画图即可. 解答: 解:坐公交 的百分比为 ×100%≈41.6%, “骑自行车、电动车”为出行方式的百分比为 ×100%=45%, 开私家车的百分比为 ×100%≈11.7%, 坐单位班车的百分比为 ×100%≈1.7% 如图, 点评: 本题考查了扇形统计图:扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.从扇形图上可以清楚地看出各部分数量和总数量之间的关系. 四、快乐探一探 25.(6分)平面上有A、B、C、D四个点,经过每两点画一条直线,一共可以画多少条直线?并画图直观说明. 考点: 直线、射线、线段. 分析: 四点在同一直线上,当三点在同一直线上,另一点不在这条直线上,当没有三点共线时三种情况讨论即可. 解答: 解:分三种情况: ① 四点在同一直线上时,只可画1条. ; ②当三点在同一直线上,另一点不在这条直线上,可画4条. ; ③当没有三点共线时,可画6条. ; 故答案为:1条或4条或6条. 点评: 本题考查了直线、射线、线段,在没有明确平面上四点是否在同一直线上时,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面. (责任编辑:admin) |