4、点、线、面、体 (1)几何图形的组成 点:线和线相交的地方是点,它是几何图形最基本的图形. 线:面和面相交的地方是线,分为直线和曲线. 面:包围着体的是面,分为平面和曲面. 体:几何体也简称体. (2)点动成线,线动成面,面动成体. (二)直线、射线、线段 1、基本概念 图形 直线 射线 线段 端点个数 无 一个 两个 表示法 直线a 直线AB(BA) 射线AB 线段a 线段AB(BA) 作法叙述 作直线AB; 作直线a 作射线AB 作线段a; 作线段AB; 连接AB 延长叙述 不能延长 反向延长射线AB 延长线段AB; 反向延长线段BA 2、直线的性质 经过两点有一条直线,并且只有一条直线. 简单地:两点确定一条直线. 3、画一条线段等于已知线段 (1)度量法 (2)用尺规作图法 4、线段的大小比较方法 (1)度量法 (2)叠合法 5、线段的中点(二等分点)、三等分点、四等分点等 定义:把一条线段平均分成两条相等线段的点. 图形: A M B 符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM. 6、线段的性质 两点的所有连线中,线段最短.简单地:两点之间,线段最短. 7、两点的距离 连接两点的线段长度叫做两点的距离. 8、点与直线的位置关系 (1)点在直线上 (2)点在直线外. (三)角 1、角:由公共端点的两条射线所组成的图形叫做角. 2、角的表示法(四种): 3、角的度量单位及换算 4、角的分类 ∠β 锐角 直角 钝角 平角 周角 范围 0<∠β<90° ∠β=90° 90°<∠β<180° ∠β=180° ∠β=360° 5、角的比较方法 (1)度量法 (2)叠合法 6、角的和、差、倍、分及其近似值 7、画一个角等于已知角 (1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角. (2)借助量角器能画出给定度数的角. (3)用尺规作图法. 8、角的平线线 定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线. 图形: 符号: 9、互余、互补 (1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角. (2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角. (3)余(补)角的性质:等角的补(余)角相等. 10、方向角 (1)正方向 (2)北(南)偏东(西)方向 (3)东(西)北(南)方向 更多中考信息》》》中考频道 (责任编辑:admin) |