初中学习网-初中学习方法、解题技巧、知识点总结、学习计划、同步辅导资料!

初中学习网-人民教育出版社人教版部编同步解析与测评答案-电子课本资料下载-知识点总结学习方法与技巧补课解题技巧学习计划表-人教网-初中试卷网-中学学科网

当前位置: 首页 > 初中数学 > 综合辅导 >

初中数学重要知识点初中数学必考知识全解解题模型

http://www.newdu.com 2018-11-27 三好网 佚名 参加讨论

    初中数学重要知识点初中数学必考知识全解解题模型。有理数是很重要的知识,初中数学辅导名师把这些知识整理出来发给大家,大家在这个周末放假时间多多复习一下吧!
    初中数学重要知识点基本知识
    ㈠、数与代数A、数与式:
    1、有理数
    有理数:
    ①整数→正整数/0/负整数
    ②分数→正分数/负分数
    初中必考知识点总结与解题方法
    数轴:
    ①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
    ②任何一个有理数都可以用数轴上的一个点来表示。
    ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
    ④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
    绝对值:
    ①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
    ②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
    有理数的运算:
    加法:
    ①同号相加,取相同的符号,把绝对值相加。
    ②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
    ③一个数与0相加不变。
    减法:减去一个数,等于加上这个数的相反数。
    乘法:
    ①两数相乘,同号得正,异号得负,绝对值相乘。
    ②任何数与0相乘得0。
    ③乘积为1的两个有理数互为倒数。
    除法:
    ①除以一个数等于乘以一个数的倒数。
    ②0不能作除数。
    乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
    混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
    2、实数
    无理数:无限不循环小数叫无理数
    平方根:
    ①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
    ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
    ③一个正数有2个平方根/0的平方根为0/负数没有平方根。
    ④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
    立方根:
    ①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
    ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
    ③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
    实数:
    ①实数分有理数和无理数。
    ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
    ③每一个实数都可以在数轴上的一个点来表示。
    3、代数式
    代数式:单独一个数或者一个字母也是代数式。
    合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
    4、整式与分式
    整式:
    ①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
    ②一个单项式中,所有字母的指数和叫做这个单项式的次数。
    ③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
    整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
    幂的运算:AM+AN=A(M+N)
    (AM)N=AMN
    (A/B)N=AN/BN 除法一样。
    整式的乘法:
    ①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
    ②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
    ③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
    公式两条:平方差公式/完全平方公式
    整式的除法:
    ①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
    ②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
    分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
    方法:提公因式法、运用公式法、分组分解法、十字相乘法。
    分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
    分式的运算:
    乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
    除法:除以一个分式等于乘以这个分式的倒数。
    加减法:
    ①同分母分式相加减,分母不变,把分子相加减。
    ②异分母的分式先通分,化为同分母的分式,再加减。
    分式方程:
    ①分母中含有未知数的方程叫分式方程。
    ②使方程的分母为0的解称为原方程的增根。
    方程与不等式
    1、方程与方程组
    一元一次方程:
    ①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
    ②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
    解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
    二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
    二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
    适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
    二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
    解二元一次方程组的方法:代入消元法/加减消元法。
    一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程
    1一元二次方程的二次函数的关系
    大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了
    2一元二次方程的解法
    大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解
    (1)配方法
    利用配方,使方程变为完全平方公式,在用直接开平方法去求出解
    (2)分解因式法
    提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解
    (3)公式法
    这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
    3解一元二次方程的步骤:
    (1)配方法的步骤:
    先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式
    (2)分解因式法的步骤:
    把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式
    (3)公式法
    就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c
    4.韦达定理
    利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a
    也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用
    5一元一次方程根的情况
    利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:
    I当△>0时,一元二次方程有2个不相等的实数根;
    II当△=0时,一元二次方程有2个相同的实数根;
    III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)
    2、不等式与不等式组
    不等式:
    ①用符号〉,=,〈号连接的式子叫不等式。
    ②不等式的两边都加上或减去同一个整式,不等号的方向不变。
    ③不等式的两边都乘以或者除以一个正数,不等号方向不变。
    ④不等式的两边都乘以或除以同一个负数,不等号方向相反。
    不等式的解集:
    ①能使不等式成立的未知数的值,叫做不等式的解。
    ②一个含有未知数的不等式的所有解,组成这个不等式的解集。
    ③求不等式解集的过程叫做解不等式。
    一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
    一元一次不等式组:
    ①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
    ②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
    ③求不等式组解集的过程,叫做解不等式组。
    一元一次不等式的符号方向:
    在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。
    在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,A+C>B+C
    在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C
    在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0)
    在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C
    如果不等式乘以0,那么不等号改为等号
    所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;
    3、函数
    变量:因变量,自变量。
    在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
    一次函数:
    ①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。
    ②当B=0时,称Y是X的正比例函数。
    一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数Y=KX的图象是经过原点的一条直线。③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。
    空间与图形
    A、图形的认识
    1、点,线,面
    点,线,面:
    ①图形是由点,线,面构成的。
    ②面与面相交得线,线与线相交得点。
    ③点动成线,线动成面,面动成体。
    展开与折叠:
    ①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。
    ②N棱柱就是底面图形有N条边的棱柱。
    
织梦二维码生成器
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
初中语文
初中数学
初中英语
初中物理
初中化学
初中生物
初中历史
初中地理
初中道德与法治
初中历史与社会
初中日语、俄语
学习方法
初中竞赛