八年级数学教案示例:平方根
http://www.newdu.com 2024/11/25 10:11:13 新东方 佚名 参加讨论
一、教学目标 1.理解一个数平方根和算术平方根的意义; 2.理解根号的意义,会用根号表示一个数的平方根和算术平方根; 3.通过本节的训练,提高学生的逻辑思维能力; 4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣. 二、教学重点和难点 教学重点:平方根和算术平方根的概念及求法. 教学难点:平方根与算术平方根联系与区别. 三、教学方法 讲练结合. 四、教学手段 幻灯片. 五、教学过程 (一)提问 1.已知一正方形面积为50平方米,那么它的边长应为多少? 2.已知一个数的平方等于1000,那么这个数是多少? 3.一只容积为0.125立方米的正方体容器,它的棱长应为多少? 这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的.下面作一个小练习:填空 1.( )2=9; 2.( )2 =0.25; 3. 5.( )2=0.0081. 学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正. 由练习引出平方根的概念. (二)平方根概念 如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根). 用数学语言表达即为:若x2=a,则x叫做a的平方根. 由练习知:±3是9的平方根; ±0.5是0.25的平方根; 0的平方根是0; ±0.09是0.0081的平方根. 由此我们看到+3与-3均为9的平方根,0的平方根是0,下面看这样一道题,填空: ( )2=-4 学生思考后,得到结论此题无答案.反问学生为什么?因为正数、0、负数的平方为非负数.由此我们可以得到结论,负数是没有平方根的.下面总结一下平方根的性质(可由学生总结,教师整理). (责任编辑:admin) |
- 上一篇:初二数学:数学的高效学习方法
- 下一篇:初二上册数学:第七章知识点