八年级数学教学设计:梯形的中位线(2)
http://www.newdu.com 2024/11/25 02:11:42 新东方 佚名 参加讨论
【引入新课】 梯形中位线定义:连结梯形两腰中点的线段叫梯形的中位线. 现在我们来研究梯形中位线有什么性质. 如图所示:EF是 的中位线,引导学生回答下列问题:(1)EF与BC有什么关系?( ) (2)如果 ,那么DF与FC,AD与GC是否相等?为什么?(3)EF与AD、BG有何关系? ,教师用彩色粉笔描出梯形ABGD,则EF为梯形ABGD的中位线. 由此得出梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半. 现在我们来证明这个定理(结合上面提出的问题,让学生计论证明方法,教师总结). 已知:如图所示,在梯形ABCD中, . 求证: . 分析:把EF转化为三角形中位线,然后利用三角形中位线定理即可证得. 说明:延长BC到E,使 ,或连结AN并延长AN到E,使 ,这两种方法都需证三点共线(A、N、E或B、C、E)较麻烦,所以可连结AN并延长,交BC线于点E,这样只需证 即可得 ,从而证出定理结论. 证明:连结AN并交BC延长线于点E. 又 , ∴MN是 中位线. ∴ (三角形中位线定理). 复习小学学过的梯形面积公式 . (其中a、b表示两底,h表示高) 因为梯形中位线 所以有下面公式: 例题:如图所示,有一块四边形的地ABCD,测得 ,顶点B、C到AD的距离分别为10m、4m,求这块地的面积. 分析:这是一个不规则的多边形面积计算问题,我们可以采取作适当的辅助线把它分割成三角形、平行四边形或梯形,然后利用这些较熟悉的面积公式来计算任意多边形的面积. 解: , 答:这块地的面积是 182 . 说明:在几何有关计算中,常常需要用代数知识,如列方程求未知量;在列方程时又需要根据几何中的定理,提醒学生注意数形结合这种解决问题的方法. 【小结】 以回答问题的方式让学生总结) (1)什么叫梯形中位线?梯形有几条中位线? (2)梯形中位线有什么性质? (3)梯形中位线定理的特点是什么? (同一个题没下有两个结论,一是中位线与底的位置关系;二是中位线与底的数量关系). (4)怎样计算梯形面积?怎样计算任意多边形面积?(用投影仪) 学过梯形、三角形中位线概念后,可以把平行线等分线段定理的两个推论,分别看成是梯形、三角形中位线的判定定理. 七、布置作业 教材P188中8、P189中10、11. B组2(选做) 九、板书设计 (责任编辑:admin) |
- 上一篇:初二数学教案:三角形相似的判定(第2课时)
- 下一篇:八年级数学教学设计:作图题举例