一.教学目标 1.了解最简二次根式的意义,并能作出准确判断. 2.能熟练地把二次根式化为最简二次根式. 3.了解把二次根式化为最简二次根式在实际问题中的应用. 4.进一步培养学生运用二次根式的性质进行二次根式化简的能力,提高运算能力. 5.通过多种方法化简二次根式,渗透事物间相互联系的辩证观点. 6.通过本节的学习,渗透转化的数学思想. 二.重点难点 1.教学重点 会把二次根式化简为最简二次根式 2.教学难点 准确运用化二次根式为最简二次根式的方法 三.教学方法 程序式教学 四.课时安排 2课时 五.教学过程 1.复习引入 教师准备本节内容需要的二次根式的性质和与性质相关例题、练习题以及引入材料. 【预备资料】 ⑴.二次根式的性质 ⑵.二次根式性质例题 ⑶.二次根式性质练习题 【引入材料】 看下面的问题: 已知: 解法1: 解法2: 比较两种解法,解法1很繁,解法2较简便,比例说明,将二次根式化简,有时会带来方便. 2.概念讲解与巩固 学生阅读教师预备的材料,理解后自主完成教师准备的正选练习题,每完成一套与教师交流一次,在教师的指示下继续进行.教师要及时了解学生对最简二次根式概念的反馈情况,如果掌握比较理想,则要求进入下一步操作,否则应与学生进行适当沟通,如需要可从备选练习题选择巩固. 【概念讲解材料】 满足下列条件的二次根式,叫做最简二次根式: (1) 被开方数的因数是整数,因式是整式; (2) 被开方数中不含能开得尽方的因数或因式. 如: |