课题:全等三角形的判定(二) 教学目标: 1、知识目标: (1)熟记角边角公理、角角边推论的内容; (2)能应用角边角公理及其推论证明两个三角形全等. 2、能力目标: (1)通过“角边角”公理及其推论的运用,提高学生的逻辑思维能力; (2)通过观察几何图形,培养学生的识图能力. 3、情感目标: (1)通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯 ; (2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧. 教学重点:学会运用角边角公理及其推论证明两个三角形全等. 教学难点:SAS公理、ASA公理和AAS推论的综合运用. 教学用具:直尺、微机 教学方法:探究类比法 教学过程: 1、新课引入 投影显示 这样几个问题让学生议论后,他们的答案或许只是一种感觉“行或不行”.于是教师要引导学生,抓住问题的本质:“分别带去了三角形的几个元素?”学生通过观察比较就会容易地得出答案 . 2、公理的获得 问:恢复后的三角形和原三角形全等,那全等的条件是不是就是带去的元素呢? 让学生粗略地概括出角边角的公理.然后和学生一起做实验,根据三角形全等定义对公理进行验证. 公理:有两角和它们的夹边对应相等的两个三角形全等. 应用格式: (略) 强调: (1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论. (2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等) 所以找条件归结成两句话:已知中找,图形中看. (3)、公理与前面公理1的区别与联系. 以上几点可运用类比公理1的模式进行学习. 3、推论的获得 改变公理2的条件:有两角和其中一角的对边对应相等这样两个三角形是否全等呢? 学生分析讨论,教师巡视,适当参与讨论. (责任编辑:admin) |