三视图中的小正方体计数问题 湖北省黄石市下陆中学 宋毓彬 通过小正方体组合图形的三视图,确定组合图形中小正方体的个数,在中考或竞赛中经常会遇到。解决这类问题如果没有掌握正确的方法,仅仅依赖空间想象去解决,不仅思维难度很大,还很容易出错。 通过三视图计算组合图形的小正方体的个数,关键是要弄清楚这个小正方体组合图形共有多少行、多少列、每行每列中各有多少层,理清了这些行、列、层的数量,小正方体的个数就迎刃而解了。在三视图中,通过主视图、俯视图可以确定组合图形的列数;通过俯视图、左视图可以确定组合图形的行数;通过主视图、左视图可以确定行与列中的最高层数。 以上方法可简要地概括为:“主俯看列,俯左看行,主左看层,分清行列层,计数不求人。” 一、结果唯一的计数 例1 在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来,如图所示,则这堆正方体货箱共有( )。 A.9箱 B.10箱 C.11箱 D.12箱 分析:由三视图可知,这堆货箱共有从前到后3行,从左到右3列。由左视图:第一行均为1层,第二行最高2层,第三行最高3层;由主视图:第一列、第三列均为1层,第二列(中间列)最高为3层。故第二行、第二列为2层,第三行第二列为3层,其余皆为1层。各行、各列小正方体的个数如俯视图中所表示。这堆货箱共有3+1+1+2+1+1=9(箱)。 二、结果不唯一的计数 例2(“希望杯”数学邀请赛试题)如图2,是由若干个(大于8个)大小相同的正方体组成的一个几何体的主视图和俯视图,则这个几何体的左视图不可能是( )。 分析:由给出的主视图、俯视图可以看出,该几何体共有2行,3列。第1列均为1层,第2列最高2层,第3列最高3层。 左视图为A时,第1行、第2行最高均为3层。几何体中,第1列第1行为1层;第2列第1行、第2行均可为1层或2层,,但不能同时为1层;第3列两行均为3层。此时,小正方体的个数如俯视图A所示,最少为1+2+1+3+3=10(个),最多为1+2+2+3+3=11个。 左视图为B时,第一行均为1层,第二行最高为3层。几何体中,第1列第1行为1层;第2列第1行为1层,第2行均可为2层;第3列第1行为1层,第2行为3层。此时,小正方体的个数如俯视图B所示。小正方体个数为1+1+1+2+3=8(个)。 左视图为C时,第1行最高为2层,第2行最高为3层。几何体中,第1列第1行为1层;第2列第1行为1层或2层,第2行均为1层或2层,但不能同时为1层;第3列第1行为1层或2层(不能与第2列第1行同时都为1层),第2行为3层。此时,小正方体的个数如俯视图C所示。小正方体最少为1+2+1+1+3=8(个),最多为1+2+2+2+3=10个。 左视图为D时,第1行最高为3层,第2行最高为2层。几何体中,第1列第1行为1层;第2列第1行为1层或2层,第2行均为1层或2层,但不能同时为1层;第3列第1行为3层,第2行为1层或2层(不能与第2列第2行同时为1层)。此时,小正方体的个数如俯视图C所示。小正方体最少为1+1+3+2+1=8(个),最多为1+2+2+2+3=10个。 三、根据两种视图确定计数范围 例3(江阴市中考题)如图,是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n,则n的所有可能的值之和为 。 分析:题设中给出了主视图、俯视图,可知这个几何体有3列,2行。第1列均为1层,第2列最高2层,第3列最高3层。 几何体小正方形块数最少的情况是:第1列只有1行,共1个小正方体;第2列两行,至少有一行为2层,最少有2+1=3个小正方体,第3列两行中至少有一行为3层,最少有1+3=4个正方体。因此几何体最少块数为1+3+4=8块。 几何体小正方形块数最多的情况是:第1列只有1行,共1个小正方体;第2列两行,均为2层,共有2+2=4个小正方体,第3列两行均为3层,共有3+3=6个正方体。因此几何体最少块数为1+4+6=11块。 故n的所有可能值为8,9,10,11,所有可能值之和为8+9+10+11=38。 作者简介:宋毓彬,男,45岁,中学数学高级教师。在《中学数学教学参考》、《数理天地》、《中学生数学》、《数理化学习》、《数理化解题研究》、《中学课程辅导》、《语数外学习》、《数学周报》、《数学辅导报》、《数理报》、《少年智力开发报》、《学习报》、《小博士报》、《课程导报》等报刊发表教学辅导类文章80多篇。主要致力于初中数学中考及解题方法、技巧等教学方面的研究。 (责任编辑:admin) |