2017 欧洲女子数学奥林匹克

中图分类号: C424.79

文献标识码: A

文章编号: 1005-6416(2017)10-0031-04

- 1.在凸四边形 ABCD 中, $\angle DAB = \angle BCD$ = 90°, $\angle ABC > \angle CDA$, $Q \setminus R$ 分别为线段 $BC \setminus CD$ 上的点, 直线 QR 与 $AB \setminus AD$ 分别交于点 $P \setminus S$, 且 PQ = RS. 设 $M \setminus N$ 分别为线段 $BD \setminus QR$ 的中点. 证明: $A \setminus M \setminus N \setminus C$ 四点共圆.
- 2. 设 k 为正整数. 假设可以用 k 种颜色对全体正整数染色,并存在函数 $f: \mathbb{Z}_+ \to \mathbb{Z}_+$, 满足:
- (1)对同色的正整数 $m \setminus n$ (允许相同), 均有 f(m+n)=f(m)+f(n);
 - (2)存在正整数 m,n(允许相同),使得 $f(m+n) \neq f(m)+f(n)$.

求 k 的最小值.

- 3. 平面上有 2 017 条直线,其中,任意三条不共点. 一只蜗牛从某条直线上不为交点的一点任选一个方向出发,按照下述方法在直线上运动:蜗牛只在交叉点处转弯,且总是轮流左转和右转(首次转弯的方向可以任选);若未遇到交叉点,则蜗牛保持运动状态不变. 是否存在一条线段,使得蜗牛在一次运动中可以从两个方向穿过该线段?
- **4.** 设 $t_1 < t_2 < \cdots < t_n$ 为 $n(n \in \mathbb{Z}_+)$ 个正整数. 现有 $t_n + 1$ 名选手参加象棋比赛,任意两名选手之间至多下一盘棋. 证明:存在一种对局安排,使得下述两个条件同时满足:
- (1)每名选手下棋的盘数均属于集合 $\{t_1,t_2,\cdots,t_n\}$;
- (2)对每个 $i(1 \le i \le n)$, 存在一名选手恰下了 t_i 盘棋.
- **5.** 设正整数 $n \ge 2$. 称 n 元数组(a_1, a_2, \dots, a_n)为"昂贵数组"(数组中允许出现相同的数),当且仅当存在正整数 k,满足

$$(a_1 + a_2)(a_2 + a_3) \cdots (a_{n-1} + a_n)(a_n + a_1)$$

 $=2^{2k-1}$.

- (1)求一切正整数 $n \ge 2$, 使得存在 n 元 昂贵数组;
- (2)证明:对任意正奇数 m,存在正整数 $n \ge 2$,使得 m 在某一 n 元昂贵数组中.
- 6. 在不等边锐角 $\triangle ABC$ 中,重心 G、外心 O 关于 BC、CA、AB 的对称点分别记为 G_1 、 G_2 、 G_3 和 O_1 、 O_2 、 O_3 . 证明: \triangle G_1G_2C 、 \triangle G_1G_3B 、 \triangle G_2G_3A 、 \triangle O_1O_2C 、 \triangle O_1O_3B , \triangle O_2O_3A 与 \triangle ABC 的外接圆有一个公共点.

参考答案

1. 如图 1.

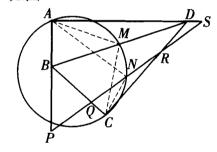


图 1

因为 N 也是线段 PS 的中点, 所以, 在 Rt $\triangle PAS$ 、Rt $\triangle CQR$ 中, 分别有

 $\angle ANP = 2 \angle ASP$,

 $\angle CNQ = 2 \angle CRQ$.

则 $\angle ANC = \angle ANP + \angle CNQ$

 $=2(\angle ASP + \angle CRQ)$

 $=2(\angle RSD + \angle DRS)$

 $=2 \angle ADC$.

类似地,在 Rt \triangle BAD、Rt \triangle BCD 中有

 $\angle AMC = 2 \angle ADC$.

故 $\angle AMC = \angle ANC$.

从而,A、M、N、C 四点共圆.

2. k 的最小值为 3.

先构造 k=3 的例子.

$$\diamondsuit f(n) = \begin{cases} 2n, & n \equiv 0 \pmod{3}; \\ n, & n \equiv 1, 2 \pmod{3}. \end{cases}$$

则 $f(1)+f(2)=3\neq f(3)$ 满足条件(2).

同时,将模 $3 \div 0$ 、1、2 的数分别染为三种不同颜色,于是,

(i) 对任意 $x \equiv y \equiv 0 \pmod{3}$,有 $x + y \equiv 0 \pmod{3}$

$$\Rightarrow f(x+y) = \frac{x+y}{3} = f(x) + f(y);$$

(ii)对任意 $x \equiv y \equiv 1 \pmod{3}$,有 $x + y \equiv 2 \pmod{3}$

$$\Rightarrow f(x+y) = x + y = f(x) + f(y);$$

(iii)对任意 $x \equiv y \equiv 2 \pmod{3}$,有

$$x + y \equiv 1 \pmod{3}$$

$$\Rightarrow f(x+y) = x + y = f(x) + f(y).$$

由此,条件(1)也满足.

从而,k=3 满足题意.

再证明 k=2 不成立.

仅需证明 k=2 时,对一切满足条件(1)的函数 f 与染色方案,均有

$$f(n)=nf(1)$$
 (任意的 $n \in \mathbf{Z}_+$), ①

与条件(2)矛盾.

在条件(1)中取 m=n,则

$$f(2n)=2f(n)$$
 (任意的 $n \in \mathbb{Z}_+$). ②

接下来证明:

$$f(3n)=3f(n)$$
 (任意的 $n \in \mathbf{Z}_{+}$). ③

对任意正整数n,由式②知

$$f(2n) = 2f(n), f(4n) = 4f(n),$$

f(6n) = 2f(3n).

若 n 与 2n 同色,则

$$f(3n) = f(2n) + f(n) = 3f(n)$$
,

式③成立:

若 2n 与 4n 同色,则

$$f(3n) = \frac{1}{2}f(6n) = \frac{1}{2}(f(4n) + f(2n))$$

= 3f(n),

式③亦成立.

否则,2n 与n、4n 均异色,故n 与4n 同色. 此时,若n 与3n 同色,则

$$f(3n) = f(4n) - f(n) = 3f(n)$$
,

式③成立;

若 n 与 3n 异色,则 2n 与 3n 同色,

$$f(3n) = f(4n) + f(n) - f(2n) = 3f(n)$$
,

式③亦成立.

至此,式③得证.

假设命题①不成立. 则存在正整数 m, $f(m) \neq mf(1)$.

不妨取 m 最小,则由式②、③知 $m \ge 5$,

日 m 为奇数. 否则,由 m 的最小性知

$$f\left(\frac{m}{2}\right) = \frac{m}{2}f(1)$$
.

故
$$f(m) = 2f\left(\frac{m}{2}\right) = mf(1)$$
,矛盾.

考虑
$$\frac{m-3}{2} < \frac{m+3}{2} < m$$
 这三个数.

同样由 m 的最小性知

$$f\left(\frac{m-3}{2}\right) = \frac{m-3}{2}f(1),$$

$$f\left(\frac{m+3}{2}\right) = \frac{m+3}{2}f(1).$$

故
$$\frac{m-3}{2}$$
、 $\frac{m+3}{2}$ 异色. 否则,

$$f(m) = f(\frac{m-3}{2}) + f(\frac{m+3}{2}) = mf(1)$$
,

矛盾.

因此,m恰与 $\frac{m-3}{2}$ 、 $\frac{m+3}{2}$ 中的一个同色.

设
$$m 与 \frac{m+3p}{2} (p \in \{-1,1\})$$
 同色.

注意到,
$$\frac{m+p}{2}$$
< m .

則
$$f(m)+f\left(\frac{m+3p}{2}\right)=f\left(3\times\frac{m+p}{2}\right)$$

$$=3f\left(\frac{m+p}{2}\right)=\frac{3(m+p)}{2}f(1)$$

$$\Rightarrow f(m) = mf(1)$$
,

矛盾.

故命题①得证,即证明了 k 的最小值为 3.

3. 不存在这样的线段.

先证明一个引理.

引理 可以将直线分成的区域黑白二染 色,使得相邻区域不同色(两个区域相邻当 且仅当它们有公共边).

证明 对直线条数 n 用数学归纳法. n=1 的情形是平凡的.

假设命题对 n 成立. 考虑 n+1 的情形.

先从n+1条直线中删去某一条直线l,则由归纳假设,其余n条直线分成的区域可以交替地黑白二染色. 再加入直线l,并使直线l一侧的所有区域变色,而另一侧不变. 容易验证,此时相邻区域仍不同色.

引理得证.

不妨设蜗牛出发时左侧为白色区域,右侧为黑色区域.

在任意一个交叉点,若蜗牛左转,则其左侧仍为白色区域(说明右侧仍为黑色);若蜗牛右转,则其右侧仍为黑色区域(说明左侧仍为白色). 这表明,任意时刻蜗牛的左侧均为白色区域,右侧均为黑色区域.

因此,满足要求的线段不存在.

【注】题设中"轮流左转和右转"这一条件是多余的.

4. $i \in \{t_1, t_2, \dots, t_n\}$.

命题用图论语言可等价地表述为:

存在 $t_n + 1$ 阶简单图 G 具有性质 P(T): $\{\deg_G v | v \in V(G)\} = T$, 其中, $\deg_G u$ 表示在图 G 中顶点 u 的度, V(G) 表示 G 的顶点集.

对 n = |T| 用数学归纳法.

当 n=1 时,设 $T=\{t\}$,取图 G 为 t+1 阶完全图 K_{t+1} 具有性质 P(T).

假设命题对 n-1 成立. 考虑 n 的情形. 设此时 T 有 $n \ge 2$ 个元素 $t_1 < t_2 < \cdots < t_n$. 令集合

 $T' = \{t_n - t_{n-1}, t_n - t_{n-2}, \dots, t_n - t_1\}.$

由归纳假设,存在 $t_n - t_1 + 1$ 阶图 G'具有性质 P(T').

现将 t_1 个新顶点加入 V(G'),并令这些点的度为 0,则得到 t_n+1 阶图 G''.

下面证明:图 G''的补图 G 具有性质 P(T). 事实上,对任意的 $t \in T \setminus \{t_n\}, t_n - t \in T'$, 故存在 $v_0 \in V(G'')$ 使得

 $\deg_{G''}v_0=t_n-t.$

由补图的定义,知 $\deg_c v_0 = t$.

对于 $t = t_n$, 任取 t_1 个新顶点中的一个 u_0 ,则 $\deg_{c'}u_0 = 0$. 故 $\deg_{c}u_0 = t_n$.

至此,命题对n也成立.

5.(1)所求 n 为一切大于 1 的奇数.

注意到,对于任意奇数 $n \ge 3$, n 元数组 $(1,1,\dots,1)$ 均为昂贵数组.

下面证明:对于任意偶数 $n \ge 4$,若存在 n 元昂贵数组,则也存在 n-2 元昂贵数组.

事实上,设 (a_1,a_2,\cdots,a_n) 为n元昂贵数组. 不妨设 $a_n = \max_i a_i$.

易见,
$$a_{n-1} + a_n \le 2a_n < 2(a_n + a_1)$$
,
 $a_n + a_1 \le 2a_n < 2(a_{n-1} + a_n)$.

而由题意,知 $a_{n-1} + a_n$ 与 $a_n + a_1$ 均为 2 的正整数次幂,故只能是

$$a_{n-1} + a_n = a_n + a_1 \triangleq 2' (r \in \mathbf{Z}_+).$$

由上式知 $a_{n-1} = a_1.$

考虑 n-2 元数组 (a_1,a_2,\dots,a_{n-2}) .

则
$$\left(\prod_{i=1}^{n-3}(a_i+a_{i+1})\right)(a_{n-2}+a_1)$$

$$=\frac{\left(\prod_{i=1}^{n-1}(a_i+a_{i+1})\right)(a_n+a_1)}{(a_{n-1}+a_n)(a_n+a_1)}=2^{2(k-r)-1}.$$

故 (a_1,a_2,\cdots,a_{n-2}) 为n-2元昂贵数组.

由此,若存在偶数元昂贵数组,则必存在 二元昂贵数组(a_1,a_2),即

$$(a_1 + a_2)^2 = 2^{2k-1}$$
.

但式①右端不为完全平方数,矛盾. 因此,所求 n 为一切大于 1 的奇数.

【注】也可对 $\sum_{i=1}^{n} a_i$ 用数学归纳法证明.

(2)对 m 用数学归纳法.

显然,1 在三元昂贵数组(1,1,1)中. 故小于2的所有正奇数均在某个昂贵数组中.

假设小于 $2^k (k \in \mathbb{Z}_+)$ 的所有正奇数均在某个昂贵数组中. 下面考虑 $(2^k, 2^{k+1})$ 中的奇数.

对任意奇数 $s \in (2^k, 2^{k+1})$,

$$r = 2^{k+1} - s \in (0, 2^k)$$

为奇数,则 r 在某个 n 元昂贵数组中,不妨设为(a_1,a_2,\dots,a_{n-1},r).

由题意知

即 $(a_1,a_2,\cdots,a_{n-1},r,s,r)$ 也为昂贵数组,且 包含 s.

由此,小于 2^{k+1} 的所有正奇数也均在某个昂贵数组中.

命题得证.

6. 为叙述方便,记 \triangle *XYZ* 的外接圆为 \bigcirc (*XYZ*);若无特殊说明,点 X 关于 BC、CA、 AB 的对称点分别记为 X_1 、 X_2 、 X_3 .

先证明一个引理.

引理 如图 2,若 P 为 $\triangle ABC$ 内一点,则 $\odot (P_1P_2C)$ 、 $\odot (P_1P_3B)$ 、 $\odot (P_2P_3A)$ 交 于 $\odot (ABC)$ 上一点 T_P .

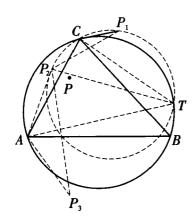


图 2

证明 设 $\odot(P_1P_2C)$ 与 $\odot(ABC)$ 交于另一点 T(与点 C 不重合)(若两圆相切,则点 T 与 C 重合).

下面仅需证明点 T 也在 $\odot(P_1P_3B)$ 、 $\odot(P_2P_3A)$ 上.

由对称性知 $P_1C = P_2C$.

则 $\angle CTP_2 = \angle CP_1P_2$ = 90° $-\frac{1}{2}\angle P_2CP_1 = 90° - \angle ACB$. 类似地, $\angle AP_3P_2 = 90° - \angle BAC$. 故 $\angle P_2TA = \angle CTA - \angle CTP_2$ = $\angle CBA - (90° - \angle ACB)$ = 90° $-\angle BAC = \angle P_2P_3A$. 从而,点 T 在 $\odot (P_2P_3A)$ 上. 类似地,点 T 在 $\odot (P_1P_3B)$ 上. 引理得证.

为叙述方便,对某一点 P,上述四圆所共点记为 T_p .

特别地,由上述证明,知 T_P 为 \odot (ABC) 上满足 $\angle CT_PP_2 = 90^\circ - \angle ACB$ 的唯一点. ① 如图 3,设 H 为 \triangle ABC 的垂心.

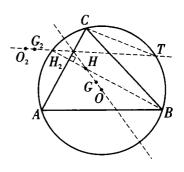


图 3

则由熟知结论,知点 H_2 在 \odot (ABC)上. 而 $G \setminus O \setminus H$ 三点共线(Euler 线),于是,由 对称性,知 $G_2 \setminus O_2 \setminus H_2$ 三点也共线.

设 G_2H_2 与 \odot (ABC) 的另一个交点为 T (与 H_2 不重合),下面只需证明:T、 T_c 、 T_o 三 点重合.

事实上,

$$\angle CTG_2 = \angle CTO_2 = \angle CTH_2$$

= $\angle CBO_2 = 90^\circ - \angle ACB$.
由结论①即得 $T \setminus T_G \setminus T_O$ 三点重合.

由此,七圆共点于T,命题得证.

【注】本题证明方法很多,读者可尝试利用 Euler 线 e 及其关于 BC、CA、AB 的对称直线 e_1 、 e_2 、 e_3 的性质证明(事实上, e_1 、 e_2 、 e_3 三线共点于 T),或利用复数计算.

(李朝晖 提供)