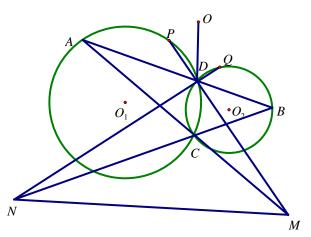
2007 年中国西部数学奥林匹克

第一天 11月10日上午8:00-12:00 每题15分

- 一、已知 $T = \{1,2,3,4,5,6,7,8\}$,对于 $A \subseteq T$, $A \neq \emptyset$,定义S(A) 为 A 中所有元素之和,问: T有多少个非空子集 A,使得 S(A) 为 B 的倍数,但不是 B 的倍数?
- 二、如图, \bigcirc O_1 与 \bigcirc O_2 相交于点 C,D,过点 D 的一条直线分别与 \bigcirc O_1 , \bigcirc O_2 相交于点 A,B,点 P 在 \bigcirc O_1 的弧 AD 上,PD 与线段 AC 的延长线交于点 M,点 Q 在 \bigcirc O_2 的弧 BD 上,QD 与线段 BC 的延长线交于点 N. O 是 $\triangle ABC$ 的外心. 求证: $OD \perp MN$ 的充要条件为 P,Q,M,N 四点共圆.



三、设实数 a, b, c 满足 a+b+c=3. 求证: $\frac{1}{5a^2-4a+11} + \frac{1}{5b^2-4b+11} + \frac{1}{5c^2-4c+11} \le \frac{1}{4}.$

四、设O 是 $\triangle ABC$ 内部一点. 证明: 存在正整数p, q, r, 使得 $\left|p\cdot\overrightarrow{OA}+q\cdot\overrightarrow{OB}+r\cdot\overrightarrow{OC}\right|<\frac{1}{2007}.$

2007 西部数学奥林匹克

广西 南宁 第二天 11月11日 上午8:00-12:00 每题15分

五、是否存在三边长都为整数的三角形,满足以下条件:最短边长为 2007,且最大的角等于最小角的两倍?

六、求所有的正整数 n,使得存在非零整数 x_1, x_2, \dots, x_n, y ,满足

$$\begin{cases} x_1 + \dots + x_n = 0, \\ x_1^2 + \dots + x_n^2 = ny^2. \end{cases}$$

七、设 P 是锐角三角形 ABC 内一点,AP,BP,CP 分别交边 BC,CA,AB 于点 D, E, F, 已知 $\triangle DEF$ \hookrightarrow $\triangle ABC$,求证: P 是 $\triangle ABC$ 的重心.

八、将n个白子与n个黑子任意地放在一个圆周上. 从某个白子起,按顺时针方向依次将白子标以1,2,…,n. 再从某个黑子起,按逆时针方向依次将黑子标以1,2,…,n. 证明: 存在连续n个棋子(不计黑白),它们的标号所成的集合为 $\{1,2,…,n\}$.

2007 西部数学奥林匹克

解答

一、已知 $T = \{1,2,3,4,5,6,7,8\}$,对于 $A \subseteq T$, $A \neq \emptyset$,定义S(A) 为 A 中所有元素之和,问: T有多少个非空子集A,使得S(A) 为 B 的倍数,但不是 B 的倍数?

解 对于空集Ø,定义 $S(\emptyset)=0$.令 $T_0=\{3,6\},T_1=\{1,4,7\},T_2=\{2,5,8\}$.对于 $A\subseteq T$,令 $A_0=A\cap T_0$, $A_1=A\cap T_1$, $A_2=A\cap T_2$,则

$$S(A) = S(A_0) + S(A_1) + S(A_2) \equiv |A_1| - |A_2| \pmod{3}$$

因此,3|S(A) 当且仅当 $|A_1| \equiv |A_2| \pmod{3}$.有以下几种情况:

$$\begin{cases} |A_1| = 0, & |A_1| = 0, \\ |A_2| = 0, & |A_2| = 3, \end{cases} \begin{vmatrix} |A_1| = 3, \\ |A_2| = 0, & |A_2| = 3, \end{vmatrix} \begin{vmatrix} |A_2| = 0, \\ |A_2| = 3, \end{vmatrix} \begin{vmatrix} |A_2| = 3, \\ |A_2| = 3, \end{vmatrix} \begin{vmatrix} |A_2| = 1, \\ |A_2| = 2, \end{vmatrix}$$

从而满足3|S(A)的非空子集A的个数为

$$2^{2}(C_{3}^{0}C_{3}^{0} + C_{3}^{0}C_{3}^{3} + C_{3}^{0}C_{3}^{0} + C_{3}^{0}C_{3}^{0} + C_{3}^{0}C_{3}^{0} + C_{3}^{1}C_{3}^{1} + C_{3}^{2}C_{3}^{2}) - 1 = 87.$$

若3|S(A), 5|S(A), 则15|S(A).

由于S(T)=36, 故满足3|S(A), 5|S(A)的S(A)的可能值为 15, 30.而

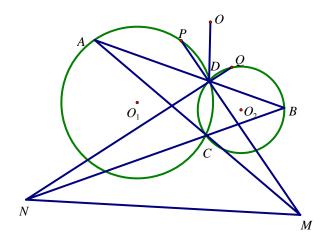
$$15=8+7=8+6+1=8+5+2=8+4+3=8+4+2+1$$

= $7+6+2=7+5+3=7+5+2+1=7+4+3+1$
= $6+5+4=6+5+3+1=6+4+3+2$
= $5+4+3+2+1$,
 $36-30=6=5+1=4+2=3+2+1$.

故满足3|S(A), 5|S(A), $A \neq \emptyset$ 的 A 的个数为 17.

所以,所求的 A 的个数为 87-17=70.

二、如图, \bigcirc O_1 与 \bigcirc O_2 相交于点C, D, 过点 D 的一条直线分别与 \bigcirc O_1 , \bigcirc O_2 相交于点 A, B, 点 P 在 \bigcirc O_1 的弧 AD 上,PD 与线段 AC 的延长线交于点 M, 点 Q 在 \bigcirc O_2 的



第 3 页 共 10 页

弧 BD 上,QD 与线段 BC 的延长线交于点 N. O 是 $\triangle ABC$ 的外心. 求证: $OD \perp MN$ 的充要条件为P,Q,M,N四点共圆.

证 设三角形 ABC 的外接圆 O 的半径为 R, 从 N 到圆 O 的切线为 NX, 则

$$NO^2 = NX^2 + R^2 = NC \cdot NB + R^2$$
, (1)

同理

$$MO^2 = MC \cdot MA + R^2.$$

因为A, C, D, P 四点共圆, 所以

$$MC \cdot MA = MD \cdot MP$$
, 3

因为Q,D,C,B四点共圆,所以

$$NC \cdot NB = ND \cdot NQ$$
,

由①, ②, ③, ④得

$$NO^{2} - MO^{2} = ND \cdot NQ - MD \cdot MP$$

$$= ND(ND + DQ) - MD(MD + DP)$$

$$= ND^{2} - MD^{2} + (ND \cdot DQ - MD \cdot DP),$$

所以,

$$OD \perp MN \Leftrightarrow NO^2 - MO^2 = ND^2 - MD^2$$

 $\Leftrightarrow ND \cdot DQ = MD \cdot DP$
 $\Leftrightarrow P.O.M.N$ 四点共圆.

三、设实数 a, b, c 满足 a+b+c=3. 求证:

$$\frac{1}{5a^2 - 4a + 11} + \frac{1}{5b^2 - 4b + 11} + \frac{1}{5c^2 - 4c + 11} \le \frac{1}{4}.$$

证 若 a, b, c 都小于 $\frac{9}{5}$, 则可以证明

$$\frac{1}{5a^2 - 4a + 11} \le \frac{1}{24} (3 - a) . \tag{*}$$

事实上, (*)
$$\Leftrightarrow$$
 (3-a)(5 a^2 -4 a +11) \geq 24

$$\Leftrightarrow 5a^3 - 19a^2 + 23a - 9 \le 0$$

$$\Leftrightarrow (a-1)^2(5a-9) \le 0$$

$$\Leftarrow a < \frac{9}{5}$$

同理,对b,c也有类似的不等式,相加便得

$$\frac{1}{5a^2-4a+11} + \frac{1}{5b^2-4b+11} + \frac{1}{5c^2-4c+11}$$

$$\leq \frac{1}{24}(3-a) + \frac{1}{24}(3-b) + \frac{1}{24}(3-c) = \frac{1}{4}.$$
若 a , b , c 中有一个不小于 $\frac{9}{5}$, 不妨设 $a \geq \frac{9}{5}$, 则
$$5a^2 - 4a + 11 = 5a(a - \frac{4}{5}) + 11$$

$$\geq 5 \cdot \frac{9}{5} \cdot (\frac{9}{5} - \frac{4}{5}) + 11 = 20,$$

$$\frac{1}{5a^2 - 4a + 11} \leq \frac{1}{20}.$$

由于 $5b^2 - 4b + 11 \ge 5(\frac{2}{5})^2 - 4 \cdot (\frac{2}{5}) + 11 = 11 - \frac{4}{5} > 10$,所以 $\frac{1}{5b^2 - 4b + 11} < \frac{1}{10}$,同理,

$$\frac{1}{5c^2-4c+11} < \frac{1}{10}$$
,所以

故

$$\frac{1}{5a^2-4a+11} + \frac{1}{5b^2-4b+11} + \frac{1}{5c^2-4c+11} < \frac{1}{20} + \frac{1}{10} + \frac{1}{10} = \frac{1}{4}.$$
 因此,总有
$$\frac{1}{5a^2-4a+11} + \frac{1}{5b^2-4b+11} + \frac{1}{5c^2-4c+11} \le \frac{1}{4}, \quad \text{当且仅当} \ a=b=c=1$$
 时等号成立.

四、设 O 是 $\triangle ABC$ 内部一点. 证明: 存在正整数 p, q, r, 使得

$$|p \cdot \overrightarrow{OA} + q \cdot \overrightarrow{OB} + r \cdot \overrightarrow{OC}| < \frac{1}{2007}$$
.

证法一 先证一个引理: 设α, β都是正实数, N 是任意一个大于 $\max\{\frac{1}{\alpha}, \frac{1}{\beta}\}$ 的整

数,则存在正整数 p_1 , p_2 和 q,使得 $1 \le q \le N^2$,且

$$|q\alpha - p_1| < \frac{1}{N}, |q\beta - p_2| < \frac{1}{N}$$

同时成立.

引理的证明: 考虑平面 N^2 +1 个点组成的集合 $T=\{(\{i\alpha\}, \{i\beta\})|i=0,1,...,N^2\}$,这里 [x]表示不超过实数 x 的最大整数, $\{x\}=x-[x]$.

现在将正方形点集 $\{(x,y)|0\leq x,y<1\}$ 沿平行于坐标轴的直线分割为 N^2 个小正方形 (这里的每个正方形都不含右边和上边的两条边),则T中必有两点落在同一个小正方形 内,即存在 $0\leq j< i\leq N^2$,使得 $|\{i\;\alpha\;\}-\{j\;\alpha\;\}|<\frac{1}{N}$, $|\{i\;\beta\;\}-\{j\;\beta\;\}|<\frac{1}{N}$.令

如果 $p_1 \le 0$,那么 $\frac{1}{N} > |q\alpha| \ge \alpha$,与 N 的选择矛盾,故 p_1 为正整数.同理 p_2 也是正整数.引理获证.

回到原题,由条件知存在正实数 α , β 使得 $\alpha\overrightarrow{OA}+\beta\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}$,利用引理的结论知对任意大于 $\max\{\frac{1}{\alpha},\frac{1}{\beta}\}$ 的正整数 N,存在正整数 p_1,p_2 和 q,使得

$$\left| q\alpha - p_1 \right| < \frac{1}{N}, \left| q\beta - p_2 \right| < \frac{1}{N}$$

同时成立,于是,由 $q\alpha\overrightarrow{OA} + q\beta\overrightarrow{OB} + q\overrightarrow{OC} = \vec{0}$ 可得

$$\begin{split} \mid p_{1}\overrightarrow{OA} + p_{2}\overrightarrow{OB} + q\overrightarrow{OC} \mid = \mid (p_{1} - q\alpha)\overrightarrow{OA} + (p_{2} - q\beta)\overrightarrow{OB} \mid \\ \leq \mid (p_{1} - q\alpha)\overrightarrow{OA} \mid + \mid (p_{2} - q\beta)\overrightarrow{OB} \mid \\ < \frac{1}{N}(\mid \overrightarrow{OA} \mid + \mid \overrightarrow{OB} \mid). \end{split}$$

取 N 充分大即可知命题成立.

证法二 由条件可知存在正实数β,γ使得 \overrightarrow{OA} + $\overrightarrow{\beta OB}$ + $\overrightarrow{\gamma OC}$ = $\overrightarrow{0}$,于是对任意正整数 k,都有 $k\overrightarrow{OA}$ + $k\overrightarrow{\beta OB}$ + $k\overrightarrow{\gamma OC}$ = $\overrightarrow{0}$,记 m(k)=[kβ],n(k)=[kγ],这里[x]表示不超过实数 x 的最大整数,{x}=x-[x].

利用β,γ都是正实数可知 m(kT)与 n(kT)都是关于正整数 k 的严格递增数列,这里 T 是某个大于 $\max\{\frac{1}{\beta},\frac{1}{\gamma}\}$ 的正整数.因此,

$$|kT\overrightarrow{OA} + m(kT)\overrightarrow{OB} + n(kT)\overrightarrow{OC}| = |-\{kT\beta\}\overrightarrow{OB} - \{kT\gamma\}\overrightarrow{OC}|$$

$$\leq \{kT\beta\} |\overrightarrow{OB}| + \{kT\gamma\} |\overrightarrow{OC}| \leq |\overrightarrow{OB}| + |\overrightarrow{OC}|.$$

这表明有无穷多个向量 $kT\overrightarrow{OA} + m(kT)\overrightarrow{OB} + n(kT)\overrightarrow{OC}$ 的终点落在一个以 O 为圆心, $|\overrightarrow{OB}| + |\overrightarrow{OC}|$ 为半径的圆内,因此,其中必有两个向量的终点之间的距离小于 $\frac{1}{2007}$,也就是说,这两个向量的差的模长小于 $\frac{1}{2007}$.即存在正整数 $k_1 < k_2$,使得

$$|(k_2T\overrightarrow{OA} + m(k_2T)\overrightarrow{OB} + n(k_2T)\overrightarrow{OC}) - (k_1T\overrightarrow{OA} + m(k_1T)\overrightarrow{OB} + n(k_1T)\overrightarrow{OC})| < \frac{1}{2007}.$$

于是,令 $p=(k_2-k_1)T,q=m(k_2T)-m(k_1T),r=n(k_2T)-n(k_1T)$,结合 T 与 m(kT),n(kT)的单调性可知 p,q,r 都是正整数. 命题获证.

五、是否存在三边长都为整数的三角形,满足以下条件:最短边长为 2007,且最大的角等于最小角的两倍?

解 不存在这样的三角形,证明如下:

不妨设 $\angle A \le \angle B \le \angle C$,则 $\angle C = 2 \angle A$,且 a = 2007.过 C 作 $\angle ACB$ 的内角平分线 CD,则 $\angle BCD = \angle A$,结合 $\angle B = \angle B$.可知 $\triangle CDB \hookrightarrow \triangle ACB$ 。所以,

$$\frac{CB}{AB} = \frac{BD}{BC} = \frac{CD}{AC} = \frac{BD + CD}{BC + AC} = \frac{BD + AD}{BC + AC} = \frac{AB}{BC + AC} \ .$$

即 $c^2=a(a+b)=2007(2007+b)$, 这里 $2007 \le b \le c < 2007+b$.

由 a,b,c 都是正整数可知 $2007|c^2$,故 $3\cdot 223|c$,可设 c=669m,则 $223m^2=2007+b$,即 $b=223m^2-2007$,结合 $2007\leq b$,可得 $m\geq 5$.

另一方面, $c \ge b$,所以, $669m \ge 223m^2 - 2007$,这要求 m < 5.矛盾,因此,满足条件的三角形不存在.

六、求所有的正整数 n,使得存在非零整数 x_1, x_2, \dots, x_n , y , 满足

$$\begin{cases} x_1 + \dots + x_n = 0, \\ x_1^2 + \dots + x_n^2 = ny^2. \end{cases}$$

解 显然 n ≠ 1.

当n=2k为偶数时,令 $x_{2i-1}=1, x_{2i}=-1, i=1,2,\cdots,k$,y=1,则满足条件.

 $\stackrel{\text{def}}{=}$ n = 3+2k (k ∈ N₊) $\stackrel{\text{def}}{=}$, $\stackrel{\text{def}}{=}$ y=2, x_1 = 4, x_2 = x_3 = x_4 = x_5 = −1,

$$x_{2i} = 2, \ x_{2i+1} = -2, i = 3, 4, \cdots, k+1$$
,

则满足条件.

当n=3时,若存在非零整数 x_1,x_2,x_3 ,使得

$$\begin{cases} x_1 + x_2 + x_3 = 0, \\ x_1^2 + x_2^2 + x_3^2 = 3y^2, \end{cases}$$

则 $2(x_1^2 + x_2^2 + x_1 x_2) = 3y^2,$

不妨设 $(x_1, x_2)=1$,则 x_1, x_2 都是奇数或者一奇一偶,从而, $x_1^2 + x_2^2 + x_1 x_2$ 是奇数,另

一方面, 2|y ,故 $3y^2 \equiv 0 \pmod{4}$,而 $2(x_1^2 + x_2^2 + x_1 x_2) \equiv 2 \pmod{4}$,矛盾.

综上所述,满足条件的正整数n为除了1和3外的一切正整数.

七、设 P 是锐角三角形 ABC 内一点,AP,BP,CP 分别交边 BC,CA,AB 于点 D, E, F,已知 $\triangle DEF$ \hookrightarrow $\triangle ABC$.求证: P 是 $\triangle ABC$ 的重心.

证法一 记 $\angle EDC$ = α , $\angle AEF$ = β , $\angle BFD$ = γ ,用 $\angle A$, $\angle B$, $\angle C$ 分别表示 $\triangle ABC$ 的三个内角的大小.则

$$\angle AFE = 2\angle B - (\angle DBE + \angle DEB) = 2\angle B - \alpha.$$

同理可证: $\angle BDF=2\angle C-\beta$, $\angle CED=2\angle A-\gamma$.

现在设 $\triangle DEF$ 和 $\triangle DEC$ 的外接圆半径为 R_1 和 R_2 ,则由正弦定理及 $\angle EFD = \angle C$,可知 $2R_1 = \frac{DE}{\sin \angle EFD} = \frac{DE}{\sin C} = 2R_2$,故 $R_1 = R_2$.类似可得 $\triangle DEF$ 和 $\triangle AEF$, $\triangle BDF$ 的外接圆半径相等.所以 $\triangle DEF$, $\triangle AEF$, $\triangle BDF$ 和 $\triangle DEC$ 这四个三角形的外接圆半径都相同,记为 R.

利用正弦定理得:

$$\frac{CE}{\sin \alpha} = \frac{EA}{\sin(2B - \alpha)} = \frac{AF}{\sin \beta} = \frac{FB}{\sin(2C - \beta)} = \frac{BD}{\sin \gamma} = \frac{DC}{\sin(2A - \gamma)} = 2R.$$

再由 Ceva 定理可知 $\frac{CE}{EA} \cdot \frac{AF}{FB} \cdot \frac{BD}{DC} = 1$,结合上式得

$$\frac{\sin\alpha\sin\beta\sin\gamma}{\sin(2B-\alpha)\sin(2C-\beta)\sin(2A-\gamma)} = 1.$$

若 $\alpha < \angle B$,则 $\alpha = \angle EDC < \angle EFA = 2\angle B - \alpha$,于是

$$\gamma=180^{\circ}-\angle EFA-\angle EFD=180^{\circ}-\angle EFA-\angle C$$

< $180^{\circ}-\angle EDC-\angle C=\angle CED=2\angle A-\gamma$.

类似可知 β <2 $\angle C$ - β .

注意到,当 0 < x < y < x + y < 180°时,有 $\sin x < \sin y$.所以,由 $0 < \alpha < 2 \angle B - \alpha < \alpha + (2 \angle B - \alpha) = 2 \angle B < 180$ °(这里用到 $\triangle ABC$ 为锐角三角形)可得 $\sin \alpha < \sin(2B - \alpha)$,同理 $\sin \beta < \sin(2 \angle C - \beta)$, $\sin \gamma < \sin(2 \angle A - \gamma)$.这与②矛盾.

类似地,若 α > $\angle B$,可得②的左边小于右边,矛盾.所以, α = $\angle B$.同理 β = $\angle C$, γ = $\angle A$. 因此,由①可知 D,E,F 分别为 BC,CA,AB 的中点.从而,P 为 $\triangle ABC$ 的重心.

证法二 本题的结论对 $\triangle ABC$ 为一般的三角形都成立.我们采用复数方法予以证

明.

设 P 为复平面上的原点,并直接用 X 表示点 X 对应的复数,则存在正实数 α , β , γ ,使得 $\alpha A+\beta B+\gamma C=0$,且 $\alpha+\beta+\gamma=1$.

由于
$$D$$
 为 AP 与 BC 的交点,可解得 $D=-\frac{\alpha}{1-\alpha}A$,同样地, $E=-\frac{\beta}{1-\beta}B$, $F=-\frac{\gamma}{1-\gamma}C$.

利用
$$\triangle DEF$$
 \hookrightarrow $\triangle ABC$ 可知 $\frac{D-E}{A-B} = \frac{E-F}{B-C}$,于是

$$\frac{\gamma BC}{1-\gamma} + \frac{\beta AB}{1-\beta} + \frac{\alpha BC}{1-\alpha} - \frac{\alpha AB}{1-\alpha} - \frac{\beta BC}{1-\beta} - \frac{\gamma CA}{1-\gamma} = 0.$$

化简得: $(\gamma^2 - \beta^2)B(C - A) + (\alpha^2 - \gamma^2)A(C - B) = 0$. 这时,若 $\gamma^2 \neq \beta^2$,则 $\frac{B(C - A)}{A(C - B)} \in R$,因此,

 $\frac{(C-A)/(C-B)}{(P-A)/(P-B)} \in R$,这要求P在 $\triangle ABC$ 的外接圆上,与P在 $\triangle ABC$ 内矛盾,所以 $\gamma^2=\beta^2$,

进而 $\alpha^2=\gamma^2$,得 $\alpha=\beta=\gamma=\frac{1}{3}$.即 P 为 $\triangle ABC$ 的重心.命题获证.

八、将n个白子与n个黑子任意地放在一个圆周上. 从某个白子起,按顺时钟方向依次将白子标以1,2,…,n. 再从某个黑子起,按逆时钟方向依次将黑子标以1,2,…,n. 证明: 存在连续n个棋子(不计黑白),它们的标号所成的集合为 $\{1,2,…,n\}$.

证 取定标号相同的黑白棋子各一个,使得该对点所决定的劣弧中其他点(不含端点,不计黑白)的个数最少.不妨假设该标号为1.

在上述所取的开劣弧中, 只有一种颜色的棋子.

事实上,若两个 1 之间有两种颜色的棋子,则白 n 和黑 n 都在其中,如图 1 ,于是两个标号为 n 的劣弧之间的点比两个标号为 1 的更少,矛盾!

如果开劣弧中全是白子, 有如下两种情形:

(1) 开劣弧中的白子是 2, …, k,如图 2 所示,则从标号为 1 的白子起,按逆时针方向连续 n 个棋子的标号所成的集合为 $\{1,2,\cdots,n\}$.

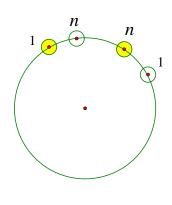
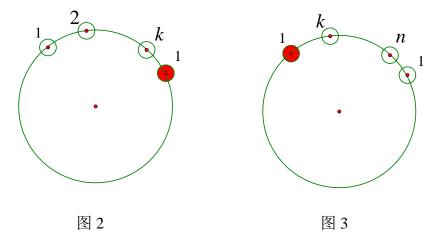


图 1

(2) 开劣弧中的白子是 k, k+1, ..., n, 如图 3 所示,则从标号为 1 的白

子起,按顺时针方向连续n个棋子的标号所成的集合为 $\{1,2,\cdots,n\}$.



如果开劣弧中全是黑子,或者开劣弧中没有棋子,类似可得.