2001年第19期 数学通讯 45

数 学 竞 赛 之窗

本栏特邀主持人 熊 斌 冯志刚

中图分类号:O1244 文献标识码:A 文章编号:0488 - 7395(2001)19 - 0045 - 02

有关本栏的稿件,请直接寄给熊斌(200062,华东师范大学数学系 E-mial:xiongbin @publicl.sta.net.cn),或冯志刚(200231,上海市上海中学 E-mail:zhgfeng @online.sh.cn).提供试题及解答请尽量注明出处.

本期给出 2000 年普特兰大学数学竞赛(第 61 届)试题及解答(初等部分),由章玉龙先生(215633, 江苏省张家港市香山中学)提供,冯志刚先生编辑.

2000 年普特兰大学数学竞赛

初 等 部 分

- 1 (Putnam,61th A-2)证明:存在无穷多个整数 n, 使得 n, n+1, n+2都可以表示为两个整数(不必不同)的平方和.例如:0=0²+0²,1=1²+0²,2=1²+1².
- 2 (Putnam,61th A-3) 设 P₁ P₂ ...P₈ 为一个圆周上依次排列的 8 个点,已知 P₁ P₃ P₅ P₇ 为一个面积为 5 的正方形,而 P₂ P₄ P₆ P₈ 为一个面积为 4 的长方形. 求这个 8 边形 P₁ P₂ ...P₈ 的面积的最大可能值.
- 3 (Putnam,61th A-5)平面上,半径为 r 的圆上有 3 个整点,证明:这 3 个整点中必有两个点,它们之间的距离小于 $\sqrt[3]{r}$.
- 4 (Putnam,61th B-1) 设 a_j, b_j, c_j 为整数,这里 1
 j N. 且对任意的 j,数 a_j, b_j, c_j 中至少有一个数为奇数.证明:存在整数 r, s, t 使得集合(ra_j

 $+sb_j+tc_j$ 1 j N j 中,至少有 $\frac{4N}{7}$ 个数为奇数.

- 6 (Putnam,61th A-6) 设f(x)为整系数多项式,整数数列 $\{a_n\}$ 定义如下: $a_0 = 0$, $a_{n+1} = f(a_n)$, n0. 证明:若存在正整数 m,使得 $a_m = 0$,则 a_1 或 a_2 中有一个等于零.
- 7 (Putnam,61th B-5) 设 S₀ 是一个由有限个正整数组成的集合,定义集合列 S₀, S₁, S₂, ...,如下:当且仅当 a-1 S_n, a S_n恰有一个成立时, a S_{n+1}.证明:存在无穷多个正整数 N,使得S_N = S₀ (N+a| a S₀).
- 8 (Putnam,61th B-6) 设 B 为 n(n 3) 维空间中, 坐标形如(±1,±1,...,±1)的点构成的集合,且 B 中不同元素的个数大于^{2 n+1}/_n. 证明:B 中必有 三点,他们为某个正三角形的顶点.

解答或提示

1 /解答 1 / 对任意正整数 m, 令 $n = 4 m^4 + 1$

 $4 m^2$,则有如下表示: $n = (2 m^2)^2 + (2 m)^2$, $n + 1 = 0^2 + (2 m^2 + 1)^2$, $n + 2 = 1^2 + (2 m^2 + 1)^2$,于是命题成立.

[解答 2] 由于佩尔方程 $x^2 - 2y^2 = 1$ 有无穷 多组正整数解,对其正整数解(x,y),令 $n = 2y^2$,则 有如下表示: $n = y^2 + y^2$, $n + 1 = 0^2 + x^2$, $n + 2 = 1^2 + x^2$,于是命题成立.

注:本题还有若干种解答.

2 最大值为 3√5. 提示 :先证明当 P₁, P₃ 分别 ← ← ← ← ← 为 P₂ P₈, P₂ P₄的中点时, P₁ P₂ ...P₈ 的面积最大.

3 设 a, b, c 为该圆上的三个整点构成的 ABC的三边长,则 S ABC $\frac{1}{2}$ (这一点可由 Pick 定理,或从行列式得到).

另一方面, $S_{ABC} = \frac{1}{2} ab \sin C = \frac{abc}{4 r} \frac{1}{2}$,所以, abc = 2r,故 a, b, c中有一个 $\sqrt[3]{2} r \sqrt[3]{r}$ 。

4 考虑不全为零的 7 个数组(x, y, z), 其中 x, y, z (0,1).

容易证明:若 a_j , b_j , c_j 不全为偶数,则集合 A_j = { $xa_j + yb_j + zc_j | x, y, z = \{0, 1\}$ } 中恰有 4 个为偶数,也恰有 4 个为奇数,这里 1 j N. 当然,在 x = y = z = 0 时, $xa_j + yb_j + zc_j$ 为偶数.

由上述结论,可知

 $\{xa_j + yb_j + zc_j | x, y, z = \{0,1\}, x, y, z = \Lambda + x\}$ 零,1 = j = N 中,恰有 4N 个数为奇数. 于是,由抽屉原则,可知存在一组数 $\{x, y, z\}$, $\{x, y, z\}$, $\{0,1\}$, $\{x, y, z\}$ 不全为零,使得 $\{xa_j + yb_j + zc_j | 1 = j = N\}$ 中至少有 $\{x, y, z\}$ 个奇数.

5 由裴蜀定理,知存在 r, t \mathbf{Z} ,使得

于是,
$$\frac{(m,n)}{n}$$
 $\binom{n}{m}$ $=$ $\frac{rm+nt}{n}$ $\binom{n}{m}$ $=$ $r\left(\frac{m}{n}, \frac{n}{m}\right)$ $+$ $t\left(\frac{n}{m}\right)$ $=$ $r\left(\frac{n-1}{m-1}\right)$ $+$ $t\left(\frac{n}{m}\right)$ Z

所以,命题成立.

6 由整系数多项式的性质可知,对任意 m, n**Z**, m n,均有 m - n| f(m) - f(n). 令 $b_n = a_{n+1} - a_n$,由上述结论,可知对任意 n N,均有 $b_n \mid b_{n+1}$ (这里约定若 $b_n = 0$,则 $b_{n+1} = 0$).

由条件 $a_0 = a_m = 0$,故 $a_1 = f(a_0) = f(a_m) = a_{m+1}$,所以 $b_0 = b_m$. 此时,如果 $b_0 = 0$,则由 $\{a_n\}$ 的定义,可知 $a_0 = a_1 = \ldots = a_m = 0$,命题成立. 如果 b_0 0,则由 $b_0 \mid b_1$, $b_1 \mid b_2$,…, $b_{m-1} \mid b_m$ 及 $b_0 = b_m$,可知对任意 $n = \{1,2,\ldots,m-1\}$,均有 $b_n = \pm b_0$,此时,结合 $b_0 + b_1 + \ldots + b_{m-1} = a_m - a_0 = 0$,所以 b_0 ,…, b_{m-1} 中恰有一半为正数,故存在 $k = \{1,2,\ldots,m-1\}$,使得 $b_{k-1} = -b_k$,从而 $a_{k-1} = a_{k+1}$,依 $\{a_n\}$ 的定义,可知对任意 n = k-1,均有 $a_n = a_{n+2}$. 从而 $a_0 = a_m = a_{m+2} = f(f(a_m)) = f(f(a_0)) = a_2$,所以 $a_2 = 0$,命题获证.

7 考虑集合 S_n 的" 母函数": $\sum_{a \le S_n} x^a$, 依题意, 可知 $\sum_{a \le S_{n+1}} x^a = (1+x) \sum_{a \le S_n} x^a \pmod{2}$, 依此可知 $\sum_{a \le S_n} x^a = (1+x) \sum_{a \le S_n} x^a \pmod{2}$.

于是,对任意 k N^{*},只要 2^k 大于 S_0 中最大的元素,令 $N=2^k$,就有

$$\sum_{a = S_N} x^a - (1+x)^{2^k} \sum_{a = S_0} x^a = (1+2x+x^2)^{2^{k-1}}$$

$$\sum_{a = S_0} x^a - (1+x^2)^{2^{k-1}} \sum_{a = S_0} x^a - \dots - (1+x^{2^k}) \sum_{a = S_0} x^a$$
(mod 2).

这表明 $S_N = S_0 + N + a \mid a = S_0 \mid$, 命题获证.

8 对 B 中的任意一点 X, 考虑集合 $T_X = \{ Y | d(X, Y) = 2, Y \in \mathbb{R}^n \}$.

这里 d(X, Y) 表示 n 维空间 \mathbb{R}^n 中两点的距离. 显然 T_X 就是 \mathbb{R}^n 中,以 T_X 为球心,2 为半径的球. 记 T_X T_X

依 C的定义,可知对任意 X B,在 C中恰有 n 个点 Y T_X . (事实上,当且仅当 Y与 X只有一个分量不同时,Y T_X),而 C的元素个数为 2^n ,而 B的元素个数大于 $\frac{2^n}{n}$,所以,在 C中存在一点 Y,使得 Y到 B中的三个点 P, Q, R 的距离均为 2,从而 P, Q, R 都与 Y 只在一个分量上不同,所以,P, Q, R 之间两两的距离相等,即 P, Q, R 为某个正三角形的顶点.