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1.
Let M be a point on the side AB of (ABC. Let 
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 and r be the radii of the inscribed circles of triangles AMC, BMC and ABC. Let 
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 and q be the radii of the escribed circles of the same triangles that lie in the angle ACB. Prove that 
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2.
Let a, b and n be integers greater than 1, and let a and b be the bases of two number systems. 
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 are numbers in the system with base a, and 
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 are numbers in the system with base b; these are related as follows:
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Prove: 
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 if and only if 
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3.
The real numbers 
[image: image13.wmf]0

a

, 
[image: image14.wmf]1

a

, …, 
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, … satisfy the condition 
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. The numbers 
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(a)
Prove that 
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 for all n.
(b)
Given c with 
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, prove that there exist numbers 
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, … with the above properties such that 
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 for large enough n.
4.
Find the set of all positive integers n with the property that the set 
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 can be partitioned into two sets such that the product of the numbers in one set equals the product of the numbers in the other set.
5.
In the tetrahedron ABCD, angle BDC is a right angle. Suppose that the foot H of the perpendicular from D to the plane ABC is the intersection of the altitudes of (ABC. Prove that
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For what tetrahedra does equality hold?
6.
In a plane there are 100 points, no three of which are collinear. Consider all possible triangles having these points as vertices. Prove that no more than 70% of these triangles are acute-angled.
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