中考频道为广大考生整理了初二上册数学教案示例:平行线等分线段定理,供大家参考学习。本文主要内容是平行线等分线段定理。 教学建议 1.平行线等分线段定理 定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等. 注意事项:定理中的平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成. 定理的作用:可以用来证明同一直线上的线段相等;可以等分线段. 2.平行线等分线段定理的推论 推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰. 推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。 记忆方法:“中点”+“平行”得“中点”. 推论的用途:(1)平分已知线段;(2)证明线段的倍分. 重难点分析 本节的重点是平行线等分线段定理.因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础. 本节的难点也是平行线等分线段定理.由于学生初次接触到平行线等分线段定理,在认识和理解上有一定的难度,在加上平行线等分线段定理的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师在教学中要加以注意. 教法建议 平行线等分线段定理的引入 生活中有许多平行线等分线段定理的例子,并不陌生,平行线等分线段定理的引入可从下面几个角度考虑: ①从生活实例引入,如刻度尺、作业本、栅栏、等等; ②可用问题式引入,开始时设计一系列与平行线等分线段定理概念相关的问题由学生进行思考、研究,然后给出平行线等分线段定理和推论. (责任编辑:admin) |