四.教学过程 (一)问题与情境 我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球为 4+(-2), 黄队的净胜球为 1+(-1)。 这里用到正数与负数的加法。 (二)、师生共同探究有理数加法法则 前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法. 两个有理数相加,有多少种不同的情形? 为此,我们来看一个大家熟悉的实际问题: 足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”,打平为“0”.比如,赢3球记为+3,输1球记为-1.学校足球队在一场比赛中的胜负可能有以下各种不同的情形: (1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球.也就是 (+3)+(+1)=+4. (2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是 (-2)+(-1)=-3. 现在,请同学们说出其他可能的情形. 答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是 (+3)+(-2)=+1; 上半场输了3球,下半场赢了2球,全场输了1球,也就是 (-3)+(+2)=-1; 上半场赢了3球下半场不输不赢,全场仍赢3球,也就是 (+3)+0=+3; 上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是 (-2)+0=-2; 上半场打平,下半场也打平,全场仍是平局,也就是 0+0=0. 上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算? 这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则: 1.同号两数相加,取相同的符号,并把绝对值相加; 2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0; 3.一个数同0相加,仍得这个数. (责任编辑:admin) |